File size: 5,084 Bytes
cb8fd55 5b786df cb8fd55 4b7d3dc cb8fd55 4b7d3dc 97c0463 cb8fd55 4b7d3dc 97c0463 cb8fd55 4b7d3dc cb8fd55 4b7d3dc cb8fd55 4b7d3dc cb8fd55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import numpy as np
import requests
import cv2
from skimage import feature
from io import BytesIO
from PIL import Image
import torch
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
def get_canonical_label(object_name_phrase: str) -> str:
print(f"\n [Label] Extracting label for: '{object_name_phrase}'")
label = object_name_phrase.strip().lower().split()[-1]
label = ''.join(filter(str.isalpha, label))
print(f" [Label] β
Extracted label: '{label}'")
return label if label else "unknown"
def download_image_from_url(image_url: str) -> Image.Image:
print(f" [Download] Downloading image from: {image_url[:80]}...")
response = requests.get(image_url)
response.raise_for_status()
image = Image.open(BytesIO(response.content))
image_rgb = image.convert("RGB")
print(" [Download] β
Image downloaded and standardized to RGB.")
return image_rgb
def detect_and_crop(image: Image.Image, object_name: str, models: dict) -> Image.Image:
print(f"\n [Detect & Crop] Starting detection for object: '{object_name}'")
image_np = np.array(image.convert("RGB"))
height, width = image_np.shape[:2]
prompt = [[f"a {object_name}"]]
inputs = models['processor_gnd'](images=image, text=prompt, return_tensors="pt").to(models['device'])
with torch.no_grad():
outputs = models['model_gnd'](
**inputs,
box_threshold=0.4,
text_threshold=0.3
)
results = models['processor_gnd'].post_process_grounded_object_detection(
outputs=outputs,
input_ids=inputs.input_ids,
target_sizes=[(height, width)]
)
if not results or len(results[0]['boxes']) == 0:
print(" [Detect & Crop] β Warning: Grounding DINO did not detect the object. Using full image.")
return image
result = results[0]
scores = result['scores']
max_idx = int(torch.argmax(scores))
box = result['boxes'][max_idx].cpu().numpy().astype(int)
print(f" [Detect & Crop] β
Object detected with confidence: {scores[max_idx]:.2f}, Box: {box}")
x1, y1, x2, y2 = box
models['predictor'].set_image(image_np)
box_prompt = np.array([[x1, y1, x2, y2]])
masks, _, _ = models['predictor'].predict(box=box_prompt, multimask_output=False)
mask = masks[0]
mask_bool = mask > 0
cropped_img_rgba = np.zeros((height, width, 4), dtype=np.uint8)
cropped_img_rgba[:, :, :3] = image_np
cropped_img_rgba[:, :, 3] = mask_bool * 255
cropped_img_rgba = cropped_img_rgba[y1:y2, x1:x2]
return Image.fromarray(cropped_img_rgba, 'RGBA')
def extract_features(segmented_image: Image.Image) -> dict:
image_rgba = np.array(segmented_image)
if image_rgba.shape[2] != 4: raise ValueError("Segmented image must be RGBA")
b, g, r, a = cv2.split(image_rgba)
image_rgb = cv2.merge((b, g, r))
mask = a
gray = cv2.cvtColor(image_rgb, cv2.COLOR_BGR2GRAY)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
# If no contours are found, return zero-filled features
print(" [Features] β Warning: No contours found in segmented image. Returning zero features.")
return {
"shape_features": [0.0] * 7,
"color_features": [0.0] * 512, # 8*8*8
"texture_features": [0.0] * 26
}
hu_moments = cv2.HuMoments(cv2.moments(contours[0])).flatten()
color_hist = cv2.calcHist([image_rgb], [0, 1, 2], mask, [8, 8, 8], [0, 256, 0, 256, 0, 256])
cv2.normalize(color_hist, color_hist)
color_hist = color_hist.flatten()
gray_masked = cv2.bitwise_and(gray, gray, mask=mask)
lbp = feature.local_binary_pattern(gray_masked, P=24, R=3, method="uniform")
(texture_hist, _) = np.histogram(lbp.ravel(), bins=np.arange(0, 27), range=(0, 26))
texture_hist = texture_hist.astype("float32")
texture_hist /= (texture_hist.sum() + 1e-6)
return {
"shape_features": hu_moments.tolist(),
"color_features": color_hist.tolist(),
"texture_features": texture_hist.tolist()
}
def get_text_embedding(text: str, models: dict) -> list:
print(f" [Embedding] Generating text embedding for: '{text[:50]}...'")
text_with_instruction = f"Represent this description of a lost item for similarity search: {text}"
inputs = models['tokenizer_text'](text_with_instruction, return_tensors='pt', padding=True, truncation=True, max_length=512).to(models['device'])
with torch.no_grad():
outputs = models['model_text'](**inputs)
embedding = outputs.last_hidden_state[:, 0, :]
embedding = torch.nn.functional.normalize(embedding, p=2, dim=1)
print(" [Embedding] β
Text embedding generated.")
return embedding.cpu().numpy()[0].tolist()
def cosine_similarity(vec1: np.ndarray, vec2: np.ndarray) -> float:
return float(np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)))
def stretch_image_score(score):
if score < 0.4 or score == 1.0: return score
return 0.7 + (score - 0.4) * (0.99 - 0.7) / (1.0 - 0.4) |