File size: 5,084 Bytes
cb8fd55
 
 
 
 
 
 
5b786df
 
cb8fd55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b7d3dc
cb8fd55
4b7d3dc
 
 
 
 
97c0463
cb8fd55
4b7d3dc
 
97c0463
cb8fd55
4b7d3dc
cb8fd55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b7d3dc
 
 
 
 
 
 
 
 
cb8fd55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b7d3dc
cb8fd55
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import numpy as np
import requests
import cv2
from skimage import feature
from io import BytesIO
from PIL import Image
import torch
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True

def get_canonical_label(object_name_phrase: str) -> str:
    print(f"\n [Label] Extracting label for: '{object_name_phrase}'")
    label = object_name_phrase.strip().lower().split()[-1]
    label = ''.join(filter(str.isalpha, label))
    print(f" [Label] βœ… Extracted label: '{label}'")
    return label if label else "unknown"

def download_image_from_url(image_url: str) -> Image.Image:
    print(f" [Download] Downloading image from: {image_url[:80]}...")
    response = requests.get(image_url)
    response.raise_for_status()
    image = Image.open(BytesIO(response.content))
    image_rgb = image.convert("RGB")
    print(" [Download] βœ… Image downloaded and standardized to RGB.")
    return image_rgb

def detect_and_crop(image: Image.Image, object_name: str, models: dict) -> Image.Image:
    print(f"\n [Detect & Crop] Starting detection for object: '{object_name}'")
    image_np = np.array(image.convert("RGB"))
    height, width = image_np.shape[:2]
    prompt = [[f"a {object_name}"]]
    inputs = models['processor_gnd'](images=image, text=prompt, return_tensors="pt").to(models['device'])

    with torch.no_grad():
        outputs = models['model_gnd'](
            **inputs,
            box_threshold=0.4,
            text_threshold=0.3
        )

    results = models['processor_gnd'].post_process_grounded_object_detection(
        outputs=outputs,
        input_ids=inputs.input_ids,
        target_sizes=[(height, width)]
    )

    if not results or len(results[0]['boxes']) == 0:
        print(" [Detect & Crop] ⚠ Warning: Grounding DINO did not detect the object. Using full image.")
        return image
    result = results[0]
    scores = result['scores']
    max_idx = int(torch.argmax(scores))
    box = result['boxes'][max_idx].cpu().numpy().astype(int)
    print(f" [Detect & Crop] βœ… Object detected with confidence: {scores[max_idx]:.2f}, Box: {box}")
    x1, y1, x2, y2 = box
    models['predictor'].set_image(image_np)
    box_prompt = np.array([[x1, y1, x2, y2]])
    masks, _, _ = models['predictor'].predict(box=box_prompt, multimask_output=False)
    mask = masks[0]
    mask_bool = mask > 0
    cropped_img_rgba = np.zeros((height, width, 4), dtype=np.uint8)
    cropped_img_rgba[:, :, :3] = image_np
    cropped_img_rgba[:, :, 3] = mask_bool * 255
    cropped_img_rgba = cropped_img_rgba[y1:y2, x1:x2]
    return Image.fromarray(cropped_img_rgba, 'RGBA')

def extract_features(segmented_image: Image.Image) -> dict:
    image_rgba = np.array(segmented_image)
    if image_rgba.shape[2] != 4: raise ValueError("Segmented image must be RGBA")
    b, g, r, a = cv2.split(image_rgba)
    image_rgb = cv2.merge((b, g, r))
    mask = a
    gray = cv2.cvtColor(image_rgb, cv2.COLOR_BGR2GRAY)
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if not contours:
        # If no contours are found, return zero-filled features
        print(" [Features] ⚠ Warning: No contours found in segmented image. Returning zero features.")
        return {
            "shape_features": [0.0] * 7,
            "color_features": [0.0] * 512, # 8*8*8
            "texture_features": [0.0] * 26
        }
    hu_moments = cv2.HuMoments(cv2.moments(contours[0])).flatten()
    color_hist = cv2.calcHist([image_rgb], [0, 1, 2], mask, [8, 8, 8], [0, 256, 0, 256, 0, 256])
    cv2.normalize(color_hist, color_hist)
    color_hist = color_hist.flatten()
    gray_masked = cv2.bitwise_and(gray, gray, mask=mask)
    lbp = feature.local_binary_pattern(gray_masked, P=24, R=3, method="uniform")
    (texture_hist, _) = np.histogram(lbp.ravel(), bins=np.arange(0, 27), range=(0, 26))
    texture_hist = texture_hist.astype("float32")
    texture_hist /= (texture_hist.sum() + 1e-6)
    return {
        "shape_features": hu_moments.tolist(),
        "color_features": color_hist.tolist(),
        "texture_features": texture_hist.tolist()
    }

def get_text_embedding(text: str, models: dict) -> list:
    print(f" [Embedding] Generating text embedding for: '{text[:50]}...'")
    text_with_instruction = f"Represent this description of a lost item for similarity search: {text}"
    inputs = models['tokenizer_text'](text_with_instruction, return_tensors='pt', padding=True, truncation=True, max_length=512).to(models['device'])
    with torch.no_grad():
        outputs = models['model_text'](**inputs)
        embedding = outputs.last_hidden_state[:, 0, :]
        embedding = torch.nn.functional.normalize(embedding, p=2, dim=1)
    print(" [Embedding] βœ… Text embedding generated.")
    return embedding.cpu().numpy()[0].tolist()

def cosine_similarity(vec1: np.ndarray, vec2: np.ndarray) -> float:
    return float(np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)))

def stretch_image_score(score):
    if score < 0.4 or score == 1.0: return score
    return 0.7 + (score - 0.4) * (0.99 - 0.7) / (1.0 - 0.4)