sofzcc commited on
Commit
d5fbc7e
·
verified ·
1 Parent(s): 166b8fa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -5
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import streamlit as st
2
  import torch
3
- From newspaper import Article
 
4
 
5
  # Load model directly
6
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
@@ -8,11 +9,20 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
8
  tokenizer = AutoTokenizer.from_pretrained("sofzcc/distilbert-base-uncased-fake-news-checker")
9
  model = AutoModelForSequenceClassification.from_pretrained("sofzcc/distilbert-base-uncased-fake-news-checker")
10
 
11
- def newspaper_text_extraction(article_url):
12
- article = Article(article_url)
13
  article.download()
14
  article.parse()
15
- return article. title,article.text
 
 
 
 
 
 
 
 
 
16
 
17
 
18
  # Function to predict if news is real or fake
@@ -33,7 +43,7 @@ news_url = st.text_area("News URL", height=100)
33
 
34
  if st.button("Evaluate"):
35
  if news_url:
36
- news_text = newspaper_text_extraction(news_url)
37
  prediction = predict_news(news_text)
38
  st.write(f"The news article is predicted to be: **{prediction}**")
39
  else:
 
1
  import streamlit as st
2
  import torch
3
+ import newspaper
4
+ import json
5
 
6
  # Load model directly
7
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
9
  tokenizer = AutoTokenizer.from_pretrained("sofzcc/distilbert-base-uncased-fake-news-checker")
10
  model = AutoModelForSequenceClassification.from_pretrained("sofzcc/distilbert-base-uncased-fake-news-checker")
11
 
12
+ def extract_news_text(url):
13
+ article = newspaper.Article(url=url, language='en')
14
  article.download()
15
  article.parse()
16
+
17
+ article ={
18
+ "title": str(article.title),
19
+ "text": str(article.text),
20
+ "published_date": str(article.publish_date),
21
+ "keywords": article.keywords,
22
+ "summary": str(article.summary)
23
+ }
24
+
25
+ return article['text']
26
 
27
 
28
  # Function to predict if news is real or fake
 
43
 
44
  if st.button("Evaluate"):
45
  if news_url:
46
+ news_text = extract_news_text(news_url)
47
  prediction = predict_news(news_text)
48
  st.write(f"The news article is predicted to be: **{prediction}**")
49
  else: