sofzcc commited on
Commit
8ab0dc9
·
verified ·
1 Parent(s): 13743d8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -4
app.py CHANGED
@@ -7,6 +7,13 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification
7
  tokenizer = AutoTokenizer.from_pretrained("sofzcc/distilbert-base-uncased-fake-news-checker")
8
  model = AutoModelForSequenceClassification.from_pretrained("sofzcc/distilbert-base-uncased-fake-news-checker")
9
 
 
 
 
 
 
 
 
10
  # Function to predict if news is real or fake
11
  def predict_news(news_text):
12
  inputs = tokenizer(news_text, return_tensors="pt", truncation=True, padding=True, max_length=512)
@@ -19,13 +26,14 @@ def predict_news(news_text):
19
  # Streamlit App
20
  st.title("Fake News Detector")
21
 
22
- st.write("Enter a news article below to check if it's real or fake:")
23
 
24
- news_text = st.text_area("News Article", height=300)
25
 
26
  if st.button("Evaluate"):
27
- if news_text:
 
28
  prediction = predict_news(news_text)
29
  st.write(f"The news article is predicted to be: **{prediction}**")
30
  else:
31
- st.write("Please enter some news text to evaluate.")
 
7
  tokenizer = AutoTokenizer.from_pretrained("sofzcc/distilbert-base-uncased-fake-news-checker")
8
  model = AutoModelForSequenceClassification.from_pretrained("sofzcc/distilbert-base-uncased-fake-news-checker")
9
 
10
+ def newspaper_text_extraction(article_url):
11
+ article = Article(article_url)
12
+ article.download()
13
+ article.parse()
14
+ return article. title,article.text
15
+
16
+
17
  # Function to predict if news is real or fake
18
  def predict_news(news_text):
19
  inputs = tokenizer(news_text, return_tensors="pt", truncation=True, padding=True, max_length=512)
 
26
  # Streamlit App
27
  st.title("Fake News Detector")
28
 
29
+ st.write("Enter a news article URL below to check if it's real or fake:")
30
 
31
+ news_url = st.text_area("News URL", height=100)
32
 
33
  if st.button("Evaluate"):
34
+ if news_url:
35
+ news_text = newspaper_text_extraction(news_url)
36
  prediction = predict_news(news_text)
37
  st.write(f"The news article is predicted to be: **{prediction}**")
38
  else:
39
+ st.write("Please enter some news URL to evaluate.")