Spaces:
Runtime error
Runtime error
yjernite
commited on
Commit
·
2f582d1
1
Parent(s):
997ca15
summary description and selection
Browse files
app.py
CHANGED
@@ -36,6 +36,53 @@ def to_string(label):
|
|
36 |
return label
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def describe_cluster(cl_dict, block="label", max_items=4):
|
40 |
labels_values = sorted(cl_dict.items(), key=operator.itemgetter(1))
|
41 |
labels_values.reverse()
|
@@ -62,6 +109,12 @@ def describe_cluster(cl_dict, block="label", max_items=4):
|
|
62 |
def show_cluster(cl_id, num_clusters):
|
63 |
if not cl_id:
|
64 |
cl_id = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
if not num_clusters:
|
66 |
num_clusters = 12
|
67 |
cl_dct = clusters_by_size[num_clusters][cl_id]
|
@@ -71,9 +124,17 @@ def show_cluster(cl_id, num_clusters):
|
|
71 |
[st.replace("/", "") for st in cl_dct["img_path_list"][i].split("//")][3:]
|
72 |
)
|
73 |
im = Image.open(os.path.join("identities-images", img_path))
|
74 |
-
|
75 |
-
caption =
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
model_fig = go.Figure()
|
78 |
model_fig.add_trace(
|
79 |
go.Pie(
|
@@ -105,7 +166,7 @@ def show_cluster(cl_id, num_clusters):
|
|
105 |
)
|
106 |
|
107 |
return (
|
108 |
-
|
109 |
gender_fig,
|
110 |
gender_description,
|
111 |
model_fig,
|
@@ -113,15 +174,18 @@ def show_cluster(cl_id, num_clusters):
|
|
113 |
ethnicity_fig,
|
114 |
ethnicity_description,
|
115 |
images,
|
116 |
-
gr.update(choices=[
|
|
|
117 |
)
|
118 |
|
119 |
|
120 |
with gr.Blocks(title=TITLE) as demo:
|
121 |
gr.Markdown(f"# {TITLE}")
|
122 |
gr.Markdown(
|
123 |
-
"Explore the data generated from [DiffusionBiasExplorer](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer)! This demo showcases patterns in the images generated from different prompts input to Stable Diffusion and Dalle-2 systems."
|
124 |
-
|
|
|
|
|
125 |
)
|
126 |
gr.HTML(
|
127 |
"""<span style="color:red" font-size:smaller>⚠️ DISCLAIMER: the images displayed by this tool were generated by text-to-image systems and may depict offensive stereotypes or contain explicit content.</span>"""
|
@@ -135,13 +199,17 @@ with gr.Blocks(title=TITLE) as demo:
|
|
135 |
with gr.Row():
|
136 |
with gr.Column():
|
137 |
cluster_id = gr.Dropdown(
|
138 |
-
choices=[
|
|
|
|
|
139 |
value=0,
|
140 |
label="Select cluster to visualize:",
|
141 |
)
|
142 |
-
a = gr.Text(label="
|
143 |
with gr.Column():
|
144 |
-
gallery = gr.Gallery(label="Most representative images in cluster").style(
|
|
|
|
|
145 |
with gr.Row():
|
146 |
with gr.Column():
|
147 |
c = gr.Plot(label="How many images from each system?")
|
@@ -154,13 +222,10 @@ with gr.Blocks(title=TITLE) as demo:
|
|
154 |
d_desc = gr.HTML(label="")
|
155 |
|
156 |
gr.Markdown(
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
)
|
162 |
-
gr.Markdown(
|
163 |
-
f"The 'Ethnicity label makeup' plot corresponds to the number of images from each of the 18 ethnicities used in the prompts. A blank value means unmarked ethnicity."
|
164 |
)
|
165 |
demo.load(
|
166 |
fn=show_cluster,
|
|
|
36 |
return label
|
37 |
|
38 |
|
39 |
+
def summarize_clusters(clusters_list, max_terms=3):
|
40 |
+
for cl_id, cl_dict in enumerate(clusters_list):
|
41 |
+
total = len(cl_dict["img_path_list"])
|
42 |
+
gdr_list = cl_dict["labels_gender"]
|
43 |
+
eth_list = cl_dict["labels_ethnicity"]
|
44 |
+
cl_dict["sentence_desc"] = (
|
45 |
+
f"Cluster {cl_id} | \t"
|
46 |
+
+ f"gender terms incl.: {gdr_list[0][0].replace('person', 'unmarked(gender)')}"
|
47 |
+
+ (
|
48 |
+
f" - {gdr_list[1][0].replace('person', 'unmarked(gender)')} | "
|
49 |
+
if len(gdr_list) > 1
|
50 |
+
else " | "
|
51 |
+
)
|
52 |
+
+ f"ethnicity terms incl.: {'unmarked(ethnicity)' if eth_list[0][0] == '' else eth_list[0][0]}"
|
53 |
+
+ (
|
54 |
+
f" - {'unmarked(ethnicity)' if eth_list[1][0] == '' else eth_list[1][0]}"
|
55 |
+
if len(eth_list) > 1
|
56 |
+
else ""
|
57 |
+
)
|
58 |
+
)
|
59 |
+
cl_dict["summary_desc"] = (
|
60 |
+
f"Cluster {cl_id} has {total} images.\n"
|
61 |
+
+ f"- The most represented gender terms are {gdr_list[0][0].replace('person', 'unmarked')} ({gdr_list[0][1]})"
|
62 |
+
+ (
|
63 |
+
f" and {gdr_list[1][0].replace('person', 'unmarked')} ({gdr_list[1][1]}).\n"
|
64 |
+
if len(gdr_list) > 1
|
65 |
+
else ".\n"
|
66 |
+
)
|
67 |
+
+ f"- The most represented ethnicity terms are {'unmarked' if eth_list[0][0] == '' else eth_list[0][0]} ({eth_list[0][1]})"
|
68 |
+
+ (
|
69 |
+
f" and {'unmarked' if eth_list[1][0] == '' else eth_list[1][0]} ({eth_list[1][1]}).\n"
|
70 |
+
if len(eth_list) > 1
|
71 |
+
else ".\n"
|
72 |
+
)
|
73 |
+
+ "See below for a more detailed description."
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
for _, clusters_list in clusters_by_size.items():
|
78 |
+
summarize_clusters(clusters_list)
|
79 |
+
|
80 |
+
dropdown_descs = dict(
|
81 |
+
(num_clusters, [cl_dct["sentence_desc"] for cl_dct in clusters_list])
|
82 |
+
for num_clusters, clusters_list in clusters_by_size.items()
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
def describe_cluster(cl_dict, block="label", max_items=4):
|
87 |
labels_values = sorted(cl_dict.items(), key=operator.itemgetter(1))
|
88 |
labels_values.reverse()
|
|
|
109 |
def show_cluster(cl_id, num_clusters):
|
110 |
if not cl_id:
|
111 |
cl_id = 0
|
112 |
+
else:
|
113 |
+
cl_id = (
|
114 |
+
dropdown_descs[num_clusters].index(cl_id)
|
115 |
+
if cl_id in dropdown_descs[num_clusters]
|
116 |
+
else 0
|
117 |
+
)
|
118 |
if not num_clusters:
|
119 |
num_clusters = 12
|
120 |
cl_dct = clusters_by_size[num_clusters][cl_id]
|
|
|
124 |
[st.replace("/", "") for st in cl_dct["img_path_list"][i].split("//")][3:]
|
125 |
)
|
126 |
im = Image.open(os.path.join("identities-images", img_path))
|
127 |
+
# .resize((256, 256))
|
128 |
+
caption = (
|
129 |
+
"_".join([img_path.split("/")[0], img_path.split("/")[-1]])
|
130 |
+
.replace("Photo_portrait_of_an_", "")
|
131 |
+
.replace("Photo_portrait_of_a_", "")
|
132 |
+
.replace("SD_v2_random_seeds_identity_", "(SD v.2) ")
|
133 |
+
.replace("dataset-identities-dalle2_", "(Dall-E 2) ")
|
134 |
+
.replace("SD_v1.4_random_seeds_identity_", "(SD v.1.4) ")
|
135 |
+
.replace("_", " ")
|
136 |
+
)
|
137 |
+
images.append((im, caption))
|
138 |
model_fig = go.Figure()
|
139 |
model_fig.add_trace(
|
140 |
go.Pie(
|
|
|
166 |
)
|
167 |
|
168 |
return (
|
169 |
+
clusters_by_size[num_clusters][cl_id]["summary_desc"],
|
170 |
gender_fig,
|
171 |
gender_description,
|
172 |
model_fig,
|
|
|
174 |
ethnicity_fig,
|
175 |
ethnicity_description,
|
176 |
images,
|
177 |
+
gr.update(choices=dropdown_descs[num_clusters]),
|
178 |
+
# gr.update(choices=[i for i in range(num_clusters)]),
|
179 |
)
|
180 |
|
181 |
|
182 |
with gr.Blocks(title=TITLE) as demo:
|
183 |
gr.Markdown(f"# {TITLE}")
|
184 |
gr.Markdown(
|
185 |
+
"Explore the data generated from [DiffusionBiasExplorer](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer)! This demo showcases patterns in the images generated from different prompts input to Stable Diffusion and Dalle-2 systems."
|
186 |
+
)
|
187 |
+
gr.Markdown(
|
188 |
+
"See the results on how the images from different prompts cluster together below."
|
189 |
)
|
190 |
gr.HTML(
|
191 |
"""<span style="color:red" font-size:smaller>⚠️ DISCLAIMER: the images displayed by this tool were generated by text-to-image systems and may depict offensive stereotypes or contain explicit content.</span>"""
|
|
|
199 |
with gr.Row():
|
200 |
with gr.Column():
|
201 |
cluster_id = gr.Dropdown(
|
202 |
+
choices=dropdown_descs[
|
203 |
+
num_clusters.value
|
204 |
+
], # [i for i in range(num_clusters.value)],
|
205 |
value=0,
|
206 |
label="Select cluster to visualize:",
|
207 |
)
|
208 |
+
a = gr.Text(label="Cluster summary")
|
209 |
with gr.Column():
|
210 |
+
gallery = gr.Gallery(label="Most representative images in cluster").style(
|
211 |
+
grid=[2, 4], height="auto"
|
212 |
+
)
|
213 |
with gr.Row():
|
214 |
with gr.Column():
|
215 |
c = gr.Plot(label="How many images from each system?")
|
|
|
222 |
d_desc = gr.HTML(label="")
|
223 |
|
224 |
gr.Markdown(
|
225 |
+
"### Plot Descriptions \n\n"
|
226 |
+
+ " The **System makeup** plot (*left*) corresponds to the number of images from the cluster that come from each of the TTI systems that we are comparing: Dall-E 2, Stable Diffusion v.1.4. and Stable Diffusion v.2.\n\n"
|
227 |
+
+ " The **Gender term makeup** plot (*middle*) shows the number of images based on the input prompts that used the phrases man, woman, non-binary person, and person (unmarked) to describe the figure's gender.\n\n"
|
228 |
+
+ " The **Ethnicity label makeup** plot (*right*) corresponds to the number of images from each of the 18 ethnicity descriptions used in the prompts. A blank value denotes unmarked ethnicity.\n\n"
|
|
|
|
|
|
|
229 |
)
|
230 |
demo.load(
|
231 |
fn=show_cluster,
|