Spaces:
Runtime error
Runtime error
yjernite
commited on
Commit
·
2f582d1
1
Parent(s):
997ca15
summary description and selection
Browse files
app.py
CHANGED
|
@@ -36,6 +36,53 @@ def to_string(label):
|
|
| 36 |
return label
|
| 37 |
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
def describe_cluster(cl_dict, block="label", max_items=4):
|
| 40 |
labels_values = sorted(cl_dict.items(), key=operator.itemgetter(1))
|
| 41 |
labels_values.reverse()
|
|
@@ -62,6 +109,12 @@ def describe_cluster(cl_dict, block="label", max_items=4):
|
|
| 62 |
def show_cluster(cl_id, num_clusters):
|
| 63 |
if not cl_id:
|
| 64 |
cl_id = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
if not num_clusters:
|
| 66 |
num_clusters = 12
|
| 67 |
cl_dct = clusters_by_size[num_clusters][cl_id]
|
|
@@ -71,9 +124,17 @@ def show_cluster(cl_id, num_clusters):
|
|
| 71 |
[st.replace("/", "") for st in cl_dct["img_path_list"][i].split("//")][3:]
|
| 72 |
)
|
| 73 |
im = Image.open(os.path.join("identities-images", img_path))
|
| 74 |
-
|
| 75 |
-
caption =
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
model_fig = go.Figure()
|
| 78 |
model_fig.add_trace(
|
| 79 |
go.Pie(
|
|
@@ -105,7 +166,7 @@ def show_cluster(cl_id, num_clusters):
|
|
| 105 |
)
|
| 106 |
|
| 107 |
return (
|
| 108 |
-
|
| 109 |
gender_fig,
|
| 110 |
gender_description,
|
| 111 |
model_fig,
|
|
@@ -113,15 +174,18 @@ def show_cluster(cl_id, num_clusters):
|
|
| 113 |
ethnicity_fig,
|
| 114 |
ethnicity_description,
|
| 115 |
images,
|
| 116 |
-
gr.update(choices=[
|
|
|
|
| 117 |
)
|
| 118 |
|
| 119 |
|
| 120 |
with gr.Blocks(title=TITLE) as demo:
|
| 121 |
gr.Markdown(f"# {TITLE}")
|
| 122 |
gr.Markdown(
|
| 123 |
-
"Explore the data generated from [DiffusionBiasExplorer](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer)! This demo showcases patterns in the images generated from different prompts input to Stable Diffusion and Dalle-2 systems."
|
| 124 |
-
|
|
|
|
|
|
|
| 125 |
)
|
| 126 |
gr.HTML(
|
| 127 |
"""<span style="color:red" font-size:smaller>⚠️ DISCLAIMER: the images displayed by this tool were generated by text-to-image systems and may depict offensive stereotypes or contain explicit content.</span>"""
|
|
@@ -135,13 +199,17 @@ with gr.Blocks(title=TITLE) as demo:
|
|
| 135 |
with gr.Row():
|
| 136 |
with gr.Column():
|
| 137 |
cluster_id = gr.Dropdown(
|
| 138 |
-
choices=[
|
|
|
|
|
|
|
| 139 |
value=0,
|
| 140 |
label="Select cluster to visualize:",
|
| 141 |
)
|
| 142 |
-
a = gr.Text(label="
|
| 143 |
with gr.Column():
|
| 144 |
-
gallery = gr.Gallery(label="Most representative images in cluster").style(
|
|
|
|
|
|
|
| 145 |
with gr.Row():
|
| 146 |
with gr.Column():
|
| 147 |
c = gr.Plot(label="How many images from each system?")
|
|
@@ -154,13 +222,10 @@ with gr.Blocks(title=TITLE) as demo:
|
|
| 154 |
d_desc = gr.HTML(label="")
|
| 155 |
|
| 156 |
gr.Markdown(
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
)
|
| 162 |
-
gr.Markdown(
|
| 163 |
-
f"The 'Ethnicity label makeup' plot corresponds to the number of images from each of the 18 ethnicities used in the prompts. A blank value means unmarked ethnicity."
|
| 164 |
)
|
| 165 |
demo.load(
|
| 166 |
fn=show_cluster,
|
|
|
|
| 36 |
return label
|
| 37 |
|
| 38 |
|
| 39 |
+
def summarize_clusters(clusters_list, max_terms=3):
|
| 40 |
+
for cl_id, cl_dict in enumerate(clusters_list):
|
| 41 |
+
total = len(cl_dict["img_path_list"])
|
| 42 |
+
gdr_list = cl_dict["labels_gender"]
|
| 43 |
+
eth_list = cl_dict["labels_ethnicity"]
|
| 44 |
+
cl_dict["sentence_desc"] = (
|
| 45 |
+
f"Cluster {cl_id} | \t"
|
| 46 |
+
+ f"gender terms incl.: {gdr_list[0][0].replace('person', 'unmarked(gender)')}"
|
| 47 |
+
+ (
|
| 48 |
+
f" - {gdr_list[1][0].replace('person', 'unmarked(gender)')} | "
|
| 49 |
+
if len(gdr_list) > 1
|
| 50 |
+
else " | "
|
| 51 |
+
)
|
| 52 |
+
+ f"ethnicity terms incl.: {'unmarked(ethnicity)' if eth_list[0][0] == '' else eth_list[0][0]}"
|
| 53 |
+
+ (
|
| 54 |
+
f" - {'unmarked(ethnicity)' if eth_list[1][0] == '' else eth_list[1][0]}"
|
| 55 |
+
if len(eth_list) > 1
|
| 56 |
+
else ""
|
| 57 |
+
)
|
| 58 |
+
)
|
| 59 |
+
cl_dict["summary_desc"] = (
|
| 60 |
+
f"Cluster {cl_id} has {total} images.\n"
|
| 61 |
+
+ f"- The most represented gender terms are {gdr_list[0][0].replace('person', 'unmarked')} ({gdr_list[0][1]})"
|
| 62 |
+
+ (
|
| 63 |
+
f" and {gdr_list[1][0].replace('person', 'unmarked')} ({gdr_list[1][1]}).\n"
|
| 64 |
+
if len(gdr_list) > 1
|
| 65 |
+
else ".\n"
|
| 66 |
+
)
|
| 67 |
+
+ f"- The most represented ethnicity terms are {'unmarked' if eth_list[0][0] == '' else eth_list[0][0]} ({eth_list[0][1]})"
|
| 68 |
+
+ (
|
| 69 |
+
f" and {'unmarked' if eth_list[1][0] == '' else eth_list[1][0]} ({eth_list[1][1]}).\n"
|
| 70 |
+
if len(eth_list) > 1
|
| 71 |
+
else ".\n"
|
| 72 |
+
)
|
| 73 |
+
+ "See below for a more detailed description."
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
for _, clusters_list in clusters_by_size.items():
|
| 78 |
+
summarize_clusters(clusters_list)
|
| 79 |
+
|
| 80 |
+
dropdown_descs = dict(
|
| 81 |
+
(num_clusters, [cl_dct["sentence_desc"] for cl_dct in clusters_list])
|
| 82 |
+
for num_clusters, clusters_list in clusters_by_size.items()
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
def describe_cluster(cl_dict, block="label", max_items=4):
|
| 87 |
labels_values = sorted(cl_dict.items(), key=operator.itemgetter(1))
|
| 88 |
labels_values.reverse()
|
|
|
|
| 109 |
def show_cluster(cl_id, num_clusters):
|
| 110 |
if not cl_id:
|
| 111 |
cl_id = 0
|
| 112 |
+
else:
|
| 113 |
+
cl_id = (
|
| 114 |
+
dropdown_descs[num_clusters].index(cl_id)
|
| 115 |
+
if cl_id in dropdown_descs[num_clusters]
|
| 116 |
+
else 0
|
| 117 |
+
)
|
| 118 |
if not num_clusters:
|
| 119 |
num_clusters = 12
|
| 120 |
cl_dct = clusters_by_size[num_clusters][cl_id]
|
|
|
|
| 124 |
[st.replace("/", "") for st in cl_dct["img_path_list"][i].split("//")][3:]
|
| 125 |
)
|
| 126 |
im = Image.open(os.path.join("identities-images", img_path))
|
| 127 |
+
# .resize((256, 256))
|
| 128 |
+
caption = (
|
| 129 |
+
"_".join([img_path.split("/")[0], img_path.split("/")[-1]])
|
| 130 |
+
.replace("Photo_portrait_of_an_", "")
|
| 131 |
+
.replace("Photo_portrait_of_a_", "")
|
| 132 |
+
.replace("SD_v2_random_seeds_identity_", "(SD v.2) ")
|
| 133 |
+
.replace("dataset-identities-dalle2_", "(Dall-E 2) ")
|
| 134 |
+
.replace("SD_v1.4_random_seeds_identity_", "(SD v.1.4) ")
|
| 135 |
+
.replace("_", " ")
|
| 136 |
+
)
|
| 137 |
+
images.append((im, caption))
|
| 138 |
model_fig = go.Figure()
|
| 139 |
model_fig.add_trace(
|
| 140 |
go.Pie(
|
|
|
|
| 166 |
)
|
| 167 |
|
| 168 |
return (
|
| 169 |
+
clusters_by_size[num_clusters][cl_id]["summary_desc"],
|
| 170 |
gender_fig,
|
| 171 |
gender_description,
|
| 172 |
model_fig,
|
|
|
|
| 174 |
ethnicity_fig,
|
| 175 |
ethnicity_description,
|
| 176 |
images,
|
| 177 |
+
gr.update(choices=dropdown_descs[num_clusters]),
|
| 178 |
+
# gr.update(choices=[i for i in range(num_clusters)]),
|
| 179 |
)
|
| 180 |
|
| 181 |
|
| 182 |
with gr.Blocks(title=TITLE) as demo:
|
| 183 |
gr.Markdown(f"# {TITLE}")
|
| 184 |
gr.Markdown(
|
| 185 |
+
"Explore the data generated from [DiffusionBiasExplorer](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer)! This demo showcases patterns in the images generated from different prompts input to Stable Diffusion and Dalle-2 systems."
|
| 186 |
+
)
|
| 187 |
+
gr.Markdown(
|
| 188 |
+
"See the results on how the images from different prompts cluster together below."
|
| 189 |
)
|
| 190 |
gr.HTML(
|
| 191 |
"""<span style="color:red" font-size:smaller>⚠️ DISCLAIMER: the images displayed by this tool were generated by text-to-image systems and may depict offensive stereotypes or contain explicit content.</span>"""
|
|
|
|
| 199 |
with gr.Row():
|
| 200 |
with gr.Column():
|
| 201 |
cluster_id = gr.Dropdown(
|
| 202 |
+
choices=dropdown_descs[
|
| 203 |
+
num_clusters.value
|
| 204 |
+
], # [i for i in range(num_clusters.value)],
|
| 205 |
value=0,
|
| 206 |
label="Select cluster to visualize:",
|
| 207 |
)
|
| 208 |
+
a = gr.Text(label="Cluster summary")
|
| 209 |
with gr.Column():
|
| 210 |
+
gallery = gr.Gallery(label="Most representative images in cluster").style(
|
| 211 |
+
grid=[2, 4], height="auto"
|
| 212 |
+
)
|
| 213 |
with gr.Row():
|
| 214 |
with gr.Column():
|
| 215 |
c = gr.Plot(label="How many images from each system?")
|
|
|
|
| 222 |
d_desc = gr.HTML(label="")
|
| 223 |
|
| 224 |
gr.Markdown(
|
| 225 |
+
"### Plot Descriptions \n\n"
|
| 226 |
+
+ " The **System makeup** plot (*left*) corresponds to the number of images from the cluster that come from each of the TTI systems that we are comparing: Dall-E 2, Stable Diffusion v.1.4. and Stable Diffusion v.2.\n\n"
|
| 227 |
+
+ " The **Gender term makeup** plot (*middle*) shows the number of images based on the input prompts that used the phrases man, woman, non-binary person, and person (unmarked) to describe the figure's gender.\n\n"
|
| 228 |
+
+ " The **Ethnicity label makeup** plot (*right*) corresponds to the number of images from each of the 18 ethnicity descriptions used in the prompts. A blank value denotes unmarked ethnicity.\n\n"
|
|
|
|
|
|
|
|
|
|
| 229 |
)
|
| 230 |
demo.load(
|
| 231 |
fn=show_cluster,
|