Spaces:
Runtime error
Runtime error
yjernite
commited on
Commit
·
0d44baa
1
Parent(s):
3911108
ethnicity description and dropdown selector
Browse files
app.py
CHANGED
@@ -29,23 +29,32 @@ def to_string(label):
|
|
29 |
label = "non-binary person"
|
30 |
elif label == "person":
|
31 |
label = "<i>unmarked</i> (person)"
|
|
|
|
|
32 |
elif label == "gender":
|
33 |
label = "gender term"
|
34 |
return label
|
35 |
|
36 |
|
37 |
-
def describe_cluster(cl_dict, block="label"):
|
38 |
labels_values = sorted(cl_dict.items(), key=operator.itemgetter(1))
|
39 |
labels_values.reverse()
|
40 |
total = float(sum(cl_dict.values()))
|
41 |
lv_prcnt = list(
|
42 |
-
(item[0], round(item[1] * 100 / total, 0)) for item in labels_values
|
|
|
43 |
top_label = lv_prcnt[0][0]
|
44 |
-
description_string =
|
45 |
-
|
|
|
|
|
46 |
description_string += "<p>This is followed by: "
|
47 |
-
for lv in lv_prcnt[1:]:
|
48 |
description_string += "<BR/><b>%s:</b> %d%%" % (to_string(lv[0]), lv[1])
|
|
|
|
|
|
|
|
|
49 |
description_string += "</p>"
|
50 |
return description_string
|
51 |
|
@@ -58,65 +67,94 @@ def show_cluster(cl_id, num_clusters):
|
|
58 |
cl_dct = clusters_by_size[num_clusters][cl_id]
|
59 |
images = []
|
60 |
for i in range(6):
|
61 |
-
img_path = "/".join(
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
72 |
model_fig = go.Figure()
|
73 |
-
model_fig.add_trace(
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
76 |
model_description = describe_cluster(dict(cl_dct["labels_model"]), "system")
|
77 |
|
78 |
gender_fig = go.Figure()
|
79 |
gender_fig.add_trace(
|
80 |
-
go.Pie(
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
84 |
|
85 |
ethnicity_fig = go.Figure()
|
86 |
ethnicity_fig.add_trace(
|
87 |
-
go.Bar(
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
with gr.Blocks(title=TITLE) as demo:
|
99 |
gr.Markdown(f"# {TITLE}")
|
100 |
gr.Markdown(
|
101 |
-
"## Explore the data generated from [DiffusionBiasExplorer](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer)!"
|
|
|
102 |
gr.Markdown(
|
103 |
-
"### This demo showcases patterns in the images generated from different prompts input to Stable Diffusion and Dalle-2 systems."
|
|
|
104 |
gr.Markdown(
|
105 |
-
"### Below, see results on how the images from different prompts cluster together."
|
|
|
106 |
gr.HTML(
|
107 |
-
"""<span style="color:red" font-size:smaller>⚠️ DISCLAIMER: the images displayed by this tool were generated by text-to-image systems and may depict offensive stereotypes or contain explicit content.</span>"""
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
110 |
|
111 |
with gr.Row():
|
112 |
with gr.Column(scale=4):
|
113 |
-
gallery = gr.Gallery(
|
114 |
-
|
115 |
-
|
116 |
with gr.Column():
|
117 |
-
cluster_id = gr.
|
118 |
-
|
119 |
-
|
|
|
|
|
120 |
a = gr.Text(label="Number of images")
|
121 |
with gr.Row():
|
122 |
with gr.Column(scale=1):
|
@@ -127,20 +165,41 @@ with gr.Blocks(title=TITLE) as demo:
|
|
127 |
b_desc = gr.HTML(label="")
|
128 |
with gr.Column(scale=2):
|
129 |
d = gr.Plot(label="Which ethnicity terms are present?")
|
|
|
130 |
|
131 |
gr.Markdown(
|
132 |
-
f"The 'System makeup' plot corresponds to the number of images from the cluster that come from each of the TTI systems that we are comparing: Dall-E 2, Stable Diffusion v.1.4. and Stable Diffusion v.2."
|
|
|
133 |
gr.Markdown(
|
134 |
-
'The Gender plot shows the number of images based on the input prompts that used the words man, woman, non-binary person, and unmarked, which we label "person".'
|
|
|
135 |
gr.Markdown(
|
136 |
-
f"The 'Ethnicity label makeup' plot corresponds to the number of images from each of the 18 ethnicities used in the prompts. A blank value means unmarked ethnicity."
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
if __name__ == "__main__":
|
146 |
-
demo.queue().launch(debug=True)
|
|
|
29 |
label = "non-binary person"
|
30 |
elif label == "person":
|
31 |
label = "<i>unmarked</i> (person)"
|
32 |
+
elif label == "":
|
33 |
+
label = "<i>unmarked</i> ()"
|
34 |
elif label == "gender":
|
35 |
label = "gender term"
|
36 |
return label
|
37 |
|
38 |
|
39 |
+
def describe_cluster(cl_dict, block="label", max_items=4):
|
40 |
labels_values = sorted(cl_dict.items(), key=operator.itemgetter(1))
|
41 |
labels_values.reverse()
|
42 |
total = float(sum(cl_dict.values()))
|
43 |
lv_prcnt = list(
|
44 |
+
(item[0], round(item[1] * 100 / total, 0)) for item in labels_values
|
45 |
+
)
|
46 |
top_label = lv_prcnt[0][0]
|
47 |
+
description_string = (
|
48 |
+
"<span>The most represented %s is <b>%s</b>, making up about <b>%d%%</b> of the cluster.</span>"
|
49 |
+
% (to_string(block), to_string(top_label), lv_prcnt[0][1])
|
50 |
+
)
|
51 |
description_string += "<p>This is followed by: "
|
52 |
+
for lv in lv_prcnt[1 : min(len(lv_prcnt), 1 + max_items)]:
|
53 |
description_string += "<BR/><b>%s:</b> %d%%" % (to_string(lv[0]), lv[1])
|
54 |
+
if len(lv_prcnt) > max_items + 1:
|
55 |
+
description_string += "<BR/><b> - Other terms:</b> %d%%" % (
|
56 |
+
sum(lv[1] for lv in lv_prcnt[max_items + 1 :]),
|
57 |
+
)
|
58 |
description_string += "</p>"
|
59 |
return description_string
|
60 |
|
|
|
67 |
cl_dct = clusters_by_size[num_clusters][cl_id]
|
68 |
images = []
|
69 |
for i in range(6):
|
70 |
+
img_path = "/".join(
|
71 |
+
[st.replace("/", "") for st in cl_dct["img_path_list"][i].split("//")][3:]
|
72 |
+
)
|
73 |
+
images.append(
|
74 |
+
(
|
75 |
+
Image.open(os.path.join("identities-images", img_path)),
|
76 |
+
"_".join([img_path.split("/")[0], img_path.split("/")[-1]])
|
77 |
+
.replace("Photo_portrait_of_an_", "")
|
78 |
+
.replace("Photo_portrait_of_a_", "")
|
79 |
+
.replace("SD_v2_random_seeds_identity_", "(SD v.2) ")
|
80 |
+
.replace("dataset-identities-dalle2_", "(Dall-E 2) ")
|
81 |
+
.replace("SD_v1.4_random_seeds_identity_", "(SD v.1.4) ")
|
82 |
+
.replace("_", " "),
|
83 |
+
)
|
84 |
+
)
|
85 |
model_fig = go.Figure()
|
86 |
+
model_fig.add_trace(
|
87 |
+
go.Pie(
|
88 |
+
labels=list(dict(cl_dct["labels_model"]).keys()),
|
89 |
+
values=list(dict(cl_dct["labels_model"]).values()),
|
90 |
+
)
|
91 |
+
)
|
92 |
model_description = describe_cluster(dict(cl_dct["labels_model"]), "system")
|
93 |
|
94 |
gender_fig = go.Figure()
|
95 |
gender_fig.add_trace(
|
96 |
+
go.Pie(
|
97 |
+
labels=list(dict(cl_dct["labels_gender"]).keys()),
|
98 |
+
values=list(dict(cl_dct["labels_gender"]).values()),
|
99 |
+
)
|
100 |
+
)
|
101 |
+
gender_description = describe_cluster(dict(cl_dct["labels_gender"]), "gender")
|
102 |
|
103 |
ethnicity_fig = go.Figure()
|
104 |
ethnicity_fig.add_trace(
|
105 |
+
go.Bar(
|
106 |
+
x=list(dict(cl_dct["labels_ethnicity"]).keys()),
|
107 |
+
y=list(dict(cl_dct["labels_ethnicity"]).values()),
|
108 |
+
marker_color=px.colors.qualitative.G10,
|
109 |
+
)
|
110 |
+
)
|
111 |
+
ethnicity_description = describe_cluster(
|
112 |
+
dict(cl_dct["labels_ethnicity"]), "ethnicity"
|
113 |
+
)
|
114 |
+
|
115 |
+
return (
|
116 |
+
len(cl_dct["img_path_list"]),
|
117 |
+
gender_fig,
|
118 |
+
gender_description,
|
119 |
+
model_fig,
|
120 |
+
model_description,
|
121 |
+
ethnicity_fig,
|
122 |
+
ethnicity_description,
|
123 |
+
images,
|
124 |
+
)
|
125 |
|
126 |
|
127 |
with gr.Blocks(title=TITLE) as demo:
|
128 |
gr.Markdown(f"# {TITLE}")
|
129 |
gr.Markdown(
|
130 |
+
"## Explore the data generated from [DiffusionBiasExplorer](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer)!"
|
131 |
+
)
|
132 |
gr.Markdown(
|
133 |
+
"### This demo showcases patterns in the images generated from different prompts input to Stable Diffusion and Dalle-2 systems."
|
134 |
+
)
|
135 |
gr.Markdown(
|
136 |
+
"### Below, see results on how the images from different prompts cluster together."
|
137 |
+
)
|
138 |
gr.HTML(
|
139 |
+
"""<span style="color:red" font-size:smaller>⚠️ DISCLAIMER: the images displayed by this tool were generated by text-to-image systems and may depict offensive stereotypes or contain explicit content.</span>"""
|
140 |
+
)
|
141 |
+
num_clusters = gr.Radio(
|
142 |
+
[12, 24, 48],
|
143 |
+
value=12,
|
144 |
+
label="How many clusters do you want to make from the data?",
|
145 |
+
)
|
146 |
|
147 |
with gr.Row():
|
148 |
with gr.Column(scale=4):
|
149 |
+
gallery = gr.Gallery(label="Most representative images in cluster").style(
|
150 |
+
grid=(3, 3)
|
151 |
+
)
|
152 |
with gr.Column():
|
153 |
+
cluster_id = gr.Dropdown(
|
154 |
+
choices=[i for i in range(num_clusters.value)],
|
155 |
+
value=0,
|
156 |
+
label="Select cluster to visualize:",
|
157 |
+
)
|
158 |
a = gr.Text(label="Number of images")
|
159 |
with gr.Row():
|
160 |
with gr.Column(scale=1):
|
|
|
165 |
b_desc = gr.HTML(label="")
|
166 |
with gr.Column(scale=2):
|
167 |
d = gr.Plot(label="Which ethnicity terms are present?")
|
168 |
+
d_desc = gr.HTML(label="")
|
169 |
|
170 |
gr.Markdown(
|
171 |
+
f"The 'System makeup' plot corresponds to the number of images from the cluster that come from each of the TTI systems that we are comparing: Dall-E 2, Stable Diffusion v.1.4. and Stable Diffusion v.2."
|
172 |
+
)
|
173 |
gr.Markdown(
|
174 |
+
'The Gender plot shows the number of images based on the input prompts that used the words man, woman, non-binary person, and unmarked, which we label "person".'
|
175 |
+
)
|
176 |
gr.Markdown(
|
177 |
+
f"The 'Ethnicity label makeup' plot corresponds to the number of images from each of the 18 ethnicities used in the prompts. A blank value means unmarked ethnicity."
|
178 |
+
)
|
179 |
+
demo.load(
|
180 |
+
fn=show_cluster,
|
181 |
+
inputs=[cluster_id, num_clusters],
|
182 |
+
outputs=[a, b, b_desc, c, c_desc, d, d_desc, gallery],
|
183 |
+
)
|
184 |
+
num_clusters.change(
|
185 |
+
fn=show_cluster,
|
186 |
+
inputs=[cluster_id, num_clusters],
|
187 |
+
outputs=[
|
188 |
+
a,
|
189 |
+
b,
|
190 |
+
b_desc,
|
191 |
+
c,
|
192 |
+
c_desc,
|
193 |
+
d,
|
194 |
+
d_desc,
|
195 |
+
gallery,
|
196 |
+
],
|
197 |
+
)
|
198 |
+
cluster_id.change(
|
199 |
+
fn=show_cluster,
|
200 |
+
inputs=[cluster_id, num_clusters],
|
201 |
+
outputs=[a, b, b_desc, c, c_desc, d, d_desc, gallery],
|
202 |
+
)
|
203 |
|
204 |
if __name__ == "__main__":
|
205 |
+
demo.queue().launch(debug=True)
|