Spaces:
Runtime error
Runtime error
File size: 5,194 Bytes
5e01e13 ea06e5a 5e01e13 313342d 7adeb33 ea06e5a 602f686 5e01e13 ea06e5a 5e01e13 7adeb33 5e01e13 be4f1b2 5e01e13 313342d c6ba6c5 7adeb33 313342d c6ba6c5 7adeb33 313342d 5e01e13 7adeb33 313342d 5e01e13 602f686 939debd 602f686 7adeb33 602f686 7adeb33 be4f1b2 602f686 be4f1b2 602f686 313342d c6ba6c5 9e9abb9 7adeb33 c6ba6c5 9e9abb9 7adeb33 c6ba6c5 9e9abb9 c7632f4 939debd fb1b078 7adeb33 602f686 c6ba6c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import json
import gradio as gr
import os
from PIL import Image
import plotly.graph_objects as go
import plotly.express as px
import operator
TITLE = "Diffusion Faces Cluster Explorer"
clusters_12 = json.load(open("clusters/id_all_blip_clusters_12.json"))
clusters_24 = json.load(open("clusters/id_all_blip_clusters_24.json"))
clusters_48 = json.load(open("clusters/id_all_blip_clusters_48.json"))
clusters_by_size = {
12: clusters_12,
24: clusters_24,
48: clusters_48,
}
def describe_cluster(cl_dict, block="label"):
labels_values = sorted(cl_dict.items(), key=operator.itemgetter(1))
labels_values.reverse()
total = float(sum(cl_dict.values()))
lv_prcnt = list((item[0], round(item[1] * 100/total, 0)) for item in labels_values)
description_string = "The most represented %s is %s, making up about %d%% of the cluster.\n" % (block, lv_prcnt[0][0], lv_prcnt[0][1])
description_string += "This is followed by: "
for label_value_tuple in lv_prcnt[1:]:
description_string += "\n%s: %d%%" % label_value_tuple
return description_string
def show_cluster(cl_id, num_clusters):
if not cl_id:
cl_id = 0
if not num_clusters:
num_clusters = 12
cl_dct = clusters_by_size[num_clusters][cl_id]
images = []
for i in range(6):
img_path = "/".join([st.replace("/", "") for st in cl_dct['img_path_list'][i].split("//")][3:])
images.append((Image.open(os.path.join("identities-images", img_path)), "_".join([img_path.split("/")[0], img_path.split("/")[-1]]).replace('Photo_portrait_of_an_','').replace('Photo_portrait_of_a_','').replace('SD_v2_random_seeds_identity_','(SD v.2) ').replace('dataset-identities-dalle2_','(Dall-E 2) ').replace('SD_v1.4_random_seeds_identity_','(SD v.1.4) ').replace('_',' ')))
model_fig = go.Figure()
model_fig.add_trace(go.Pie(labels=list(dict(cl_dct["labels_model"]).keys()),
values=list(dict(cl_dct["labels_model"]).values())))
model_description = describe_cluster(dict(cl_dct["labels_model"]), "model")
gender_fig = go.Figure()
gender_fig.add_trace(go.Pie(labels=list(dict(cl_dct["labels_gender"]).keys()),
values=list(dict(cl_dct["labels_gender"]).values())))
gender_description = describe_cluster(dict(cl_dct["labels_gender"]), "gender")
ethnicity_fig = go.Figure()
ethnicity_fig.add_trace(go.Bar(x=list(dict(cl_dct["labels_ethnicity"]).keys()),
y=list(dict(cl_dct["labels_ethnicity"]).values()),
marker_color=px.colors.qualitative.G10))
return (len(cl_dct['img_path_list']),
gender_fig,gender_description,
model_fig, model_description,
ethnicity_fig,
images)
with gr.Blocks(title=TITLE) as demo:
gr.Markdown(f"# {TITLE}")
gr.Markdown("## This Space lets you explore the clusters based on the data generated from [DiffusionBiasExplorer](https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer).")
gr.HTML("""<span style="color:red" font-size:smaller>⚠️ DISCLAIMER: the images displayed by this tool were generated by text-to-image models and may depict offensive stereotypes or contain explicit content.</span>""")
num_clusters = gr.Radio([12,24,48], value=12, labels="How many clusters do you want to make from the data?")
with gr.Row():
with gr.Column(scale=4):
gallery = gr.Gallery(label="Most representative images in cluster").style(grid=(3,3))
with gr.Column():
cluster_id = gr.Slider(minimum=0, maximum=num_clusters.value-1, step=1, value=0, label="Click to move between clusters")
a = gr.Text(label="Number of images")
with gr.Row():
with gr.Column(scale=1):
c = gr.Plot(label="How many images from each model?")
c_desc = gr.Text(label="")
with gr.Column(scale=1):
b = gr.Plot(label="How many genders are represented?")
b_desc = gr.Text(label="")
with gr.Column(scale=2):
d = gr.Plot(label="Which ethnicities are present?")
gr.Markdown(f"The 'Model makeup' plot corresponds to the number of images from the cluster that come from each of the TTI systems that we are comparing: Dall-E 2, Stable Diffusion v.1.4. and Stable Diffusion v.2.")
gr.Markdown('The Gender plot shows the number of images based on the input prompts that used the words male, female, non-binary, and unmarked, which we label "person".')
gr.Markdown(f"The 'Ethnicity label makeup' plot corresponds to the number of images from each of the 18 ethnicities used in the prompts. A blank value means unmarked ethnicity.")
demo.load(fn=show_cluster, inputs=[cluster_id, num_clusters], outputs=[a, b, b_desc, c, c_desc, d, gallery])
num_clusters.change(fn=show_cluster, inputs=[cluster_id, num_clusters], outputs=[a, b, b_desc, c, c_desc, d, gallery])
cluster_id.change(fn=show_cluster, inputs=[cluster_id, num_clusters], outputs=[a, b, b_desc, c, c_desc, d, gallery])
if __name__ == "__main__":
demo.queue().launch(debug=True)
|