import json import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from transformers import AutoTokenizer, AutoModel, AutoConfig import numpy as np from tqdm import tqdm import re from typing import List, Tuple, Dict, Any import warnings import logging import os from datetime import datetime from sklearn.utils.class_weight import compute_class_weight import torch.nn.functional as F # Disable tokenizer parallelism to avoid forking warnings os.environ["TOKENIZERS_PARALLELISM"] = "false" warnings.filterwarnings('ignore') def set_random_seeds(seed=42): """Set random seeds for reproducibility""" import random import numpy as np import torch random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # For multi-GPU # Make CuDNN deterministic (slower but reproducible) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def setup_logging(log_dir='data/logs'): """Setup logging configuration""" # Create logs directory if it doesn't exist os.makedirs(log_dir, exist_ok=True) # Create timestamp for log file timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") log_file = os.path.join(log_dir, f'training_log_{timestamp}.log') # Configure logging logging.basicConfig( level=logging.INFO, # Back to INFO level format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler(log_file), logging.StreamHandler() # Also print to console ] ) logger = logging.getLogger(__name__) logger.info(f"Logging initialized. Log file: {log_file}") return logger, log_file def check_gpu_availability(): """Check and print GPU availability information""" logger = logging.getLogger(__name__) logger.info("=== GPU Availability Check ===") if torch.backends.mps.is_available(): logger.info("✓ MPS (Apple Silicon GPU) is available") if torch.backends.mps.is_built(): logger.info("✓ MPS is built into PyTorch") else: logger.info("✗ MPS is not built into PyTorch") else: logger.info("✗ MPS (Apple Silicon GPU) is not available") if torch.cuda.is_available(): logger.info(f"✓ CUDA is available (GPU count: {torch.cuda.device_count()})") else: logger.info("✗ CUDA is not available") logger.info(f"PyTorch version: {torch.__version__}") logger.info("=" * 50) def calculate_class_weights(dataset): """Calculate class weights for imbalanced dataset using BERT paper approach""" logger = logging.getLogger(__name__) # Collect all labels from the dataset (BERT approach: only first subtokens have real labels) all_labels = [] for window_data in dataset.processed_data: # Filter out -100 labels (special tokens + subsequent subtokens of same word) # This gives us true word-level class distribution valid_labels = [label for label in window_data['subword_labels'] if label != -100] all_labels.extend(valid_labels) # Convert to numpy array y = np.array(all_labels) # Calculate class weights using sklearn classes = np.unique(y) class_weights = compute_class_weight('balanced', classes=classes, y=y) # Create weight tensor weight_tensor = torch.FloatTensor(class_weights) logger.info(f"Word-level class distribution: {np.bincount(y)}") logger.info(f"Class 0 (Non-instruction words): {np.sum(y == 0)} words ({np.sum(y == 0)/len(y)*100:.1f}%)") logger.info(f"Class 1 (Instruction words): {np.sum(y == 1)} words ({np.sum(y == 1)/len(y)*100:.1f}%)") logger.info(f"Calculated class weights (word-level): {class_weights}") logger.info(f" Weight for class 0 (Non-instruction): {class_weights[0]:.4f}") logger.info(f" Weight for class 1 (Instruction): {class_weights[1]:.4f}") return weight_tensor class FocalLoss(nn.Module): """Focal Loss for addressing class imbalance""" def __init__(self, alpha=1, gamma=2, ignore_index=-100): super(FocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.ignore_index = ignore_index def forward(self, inputs, targets): # Flatten inputs and targets inputs = inputs.view(-1, inputs.size(-1)) targets = targets.view(-1) # Create mask for non-ignored indices mask = targets != self.ignore_index targets = targets[mask] inputs = inputs[mask] if len(targets) == 0: return torch.tensor(0.0, requires_grad=True, device=inputs.device) # Calculate cross entropy ce_loss = F.cross_entropy(inputs, targets, reduction='none') # Calculate pt pt = torch.exp(-ce_loss) # Calculate focal loss focal_loss = self.alpha * (1 - pt) ** self.gamma * ce_loss return focal_loss.mean() class InstructionDataset(Dataset): def __init__(self, data_path: str, tokenizer, max_length: int = 512, is_training: bool = True, window_size: int = 512, overlap: int = 100): self.tokenizer = tokenizer self.max_length = max_length self.is_training = is_training self.window_size = window_size self.overlap = overlap # Load and process data self.raw_data = self._load_and_process_data(data_path) # Create sliding windows at subword level (eliminates all data loss) self.processed_data = self._create_subword_sliding_windows(self.raw_data) def _load_and_process_data(self, data_path: str) -> List[Dict[str, Any]]: """Load JSONL data and process it for token classification""" logger = logging.getLogger(__name__) processed_data = [] skipped_count = 0 sanity_check_failed = 0 total_instruction_tokens = 0 total_non_instruction_tokens = 0 logger.info(f"Loading data from: {data_path}") with open(data_path, 'r', encoding='utf-8') as f: for line_num, line in enumerate(f, 1): try: data = json.loads(line.strip()) # Skip data points that failed sanity check sanity_check = data.get('sanity_check', False) # Default to False if not present if sanity_check is False: sanity_check_failed += 1 continue # Extract labeled text labeled_text = data.get('label_text', '') # Remove ... tags if present if labeled_text.startswith("") and labeled_text.endswith(""): labeled_text = labeled_text[len(""):-len("")] labeled_text = labeled_text.strip() sample_id = data.get('id', f'sample_{line_num}') # Process the tagged text processed_sample = self._process_tagged_text(labeled_text, sample_id) if processed_sample is not None: processed_data.append(processed_sample) # Count token distribution for debugging labels = processed_sample['labels'] sample_instruction_tokens = sum(1 for label in labels if label == 1) total_instruction_tokens += sample_instruction_tokens total_non_instruction_tokens += len(labels) - sample_instruction_tokens else: skipped_count += 1 except Exception as e: logger.error(f"Error processing line {line_num}: {e}") skipped_count += 1 logger.info(f"Successfully processed {len(processed_data)} samples") logger.info(f"Skipped {skipped_count} samples due to errors or malformed data") logger.info(f"Skipped {sanity_check_failed} samples due to failed sanity check") logger.info(f"Token distribution - Instruction: {total_instruction_tokens}, Non-instruction: {total_non_instruction_tokens}") if total_instruction_tokens == 0: logger.warning("No instruction tokens found! This will cause training issues.") if total_non_instruction_tokens == 0: logger.warning("No non-instruction tokens found! This will cause training issues.") return processed_data def _process_tagged_text(self, labeled_text: str, sample_id: str) -> Dict[str, Any] | None: """Process tagged text to extract tokens and labels""" logger = logging.getLogger(__name__) try: # Keep original casing since XLM-RoBERTa is case-sensitive # labeled_text = labeled_text.lower() # Removed for cased model # Find all instruction tags instruction_pattern = r'(.*?)' matches = list(re.finditer(instruction_pattern, labeled_text, re.DOTALL)) # Check for malformed tags or edge cases if '' in labeled_text and '' not in labeled_text: return None if '' in labeled_text and '' not in labeled_text: return None # Create character-level labels char_labels = [0] * len(labeled_text) # Mark instruction characters for match in matches: start, end = match.span() # Mark the content inside tags as instruction (1) content_start = start + len('') content_end = end - len('') for i in range(content_start, content_end): char_labels[i] = 1 # Remove tags and adjust labels clean_text = re.sub(instruction_pattern, r'\1', labeled_text) # Recalculate labels for clean text clean_char_labels = [] original_idx = 0 for char in clean_text: # Skip over tag characters in original text while original_idx < len(labeled_text) and labeled_text[original_idx] in '<>/': if labeled_text[original_idx:original_idx+13] == '': original_idx += 13 elif labeled_text[original_idx:original_idx+14] == '': original_idx += 14 else: original_idx += 1 if original_idx < len(char_labels): clean_char_labels.append(char_labels[original_idx]) else: clean_char_labels.append(0) original_idx += 1 # Tokenize and align labels tokens = clean_text.split() token_labels = [] char_idx = 0 for token in tokens: # Skip whitespace while char_idx < len(clean_text) and clean_text[char_idx].isspace(): char_idx += 1 # Check if any character in this token is labeled as instruction token_is_instruction = False for i in range(len(token)): if char_idx + i < len(clean_char_labels) and clean_char_labels[char_idx + i] == 1: token_is_instruction = True break token_labels.append(1 if token_is_instruction else 0) char_idx += len(token) return { 'id': sample_id, 'tokens': tokens, 'labels': token_labels, 'original_text': clean_text } except Exception as e: logger.error(f"Error processing sample {sample_id}: {e}") return None def _create_subword_sliding_windows(self, raw_data: List[Dict[str, Any]]) -> List[Dict[str, Any]]: """Create sliding windows at subword level - eliminates all data loss and mismatch issues""" logger = logging.getLogger(__name__) windowed_data = [] logger.info(f"Creating subword-level sliding windows:") logger.info(f" Window size: {self.max_length} subword tokens") logger.info(f" Overlap: {self.overlap} subword tokens") logger.info(f" Label strategy: BERT paper approach (first subtoken only)") total_original_samples = len(raw_data) total_windows = 0 samples_with_multiple_windows = 0 # Word split tracking total_words_processed = 0 total_words_split_across_windows = 0 samples_with_split_words = 0 for sample in raw_data: words = sample['tokens'] word_labels = sample['labels'] sample_id = sample['id'] encoded = self.tokenizer( words, is_split_into_words=True, add_special_tokens=True, # Include [CLS], [SEP] truncation=False, # We handle long sequences with sliding windows padding=False, return_tensors='pt' ) subword_tokens = encoded['input_ids'][0].tolist() word_ids = encoded.word_ids() # Step 2: Create aligned subword labels (BERT paper approach) # Only the FIRST subtoken of each word gets the real label, rest get -100 subword_labels = [] prev_word_id = None for word_id in word_ids: if word_id is None: subword_labels.append(-100) # Special tokens [CLS], [SEP] elif word_id != prev_word_id: # First subtoken of a new word - assign the real label subword_labels.append(word_labels[word_id]) prev_word_id = word_id else: # Subsequent subtoken of the same word - assign dummy label subword_labels.append(-100) # prev_word_id remains the same # Step 3: Create sliding windows at subword level if len(subword_tokens) <= self.max_length: # Single window - no word splits possible windowed_data.append({ 'subword_tokens': subword_tokens, 'subword_labels': subword_labels, 'original_words': words, 'original_labels': word_labels, 'sample_id': sample_id, 'window_id': 0, 'total_windows': 1, 'window_start': 0, 'window_end': len(subword_tokens), 'original_text': sample['original_text'] }) total_windows += 1 total_words_processed += len(words) else: # Multiple windows needed step = self.max_length - self.overlap window_count = 0 split_words_this_sample = set() for start in range(0, len(subword_tokens), step): end = min(start + self.max_length, len(subword_tokens)) # Extract subword window window_subword_tokens = subword_tokens[start:end] window_subword_labels = subword_labels[start:end] # Track word splits for this window window_word_ids = word_ids[start:end] if word_ids else [] window_words_set = set(wid for wid in window_word_ids if wid is not None) # Find which words are split across window boundaries for word_idx in window_words_set: if word_idx is not None: # Check if this word's subwords extend beyond current window word_subword_positions = [i for i, wid in enumerate(word_ids) if wid == word_idx] word_start_pos = min(word_subword_positions) word_end_pos = max(word_subword_positions) # Word is split if it extends beyond current window boundaries if word_start_pos < start or word_end_pos >= end: split_words_this_sample.add(word_idx) # Get original words for this window (for debugging/inspection) window_word_indices = list(window_words_set) window_original_words = [words[i] for i in window_word_indices if i < len(words)] window_original_labels = [word_labels[i] for i in window_word_indices if i < len(words)] windowed_data.append({ 'subword_tokens': window_subword_tokens, 'subword_labels': window_subword_labels, 'original_words': window_original_words, # For reference only 'original_labels': window_original_labels, # For reference only 'sample_id': sample_id, 'window_id': window_count, 'total_windows': -1, # Will be filled later 'window_start': start, 'window_end': end, 'original_text': sample['original_text'] }) window_count += 1 total_windows += 1 # Break if we've covered all subword tokens if end >= len(subword_tokens): break # Update total_windows for this sample for i in range(len(windowed_data) - window_count, len(windowed_data)): windowed_data[i]['total_windows'] = window_count # Track word split statistics total_words_processed += len(words) total_words_split_across_windows += len(split_words_this_sample) if len(split_words_this_sample) > 0: samples_with_split_words += 1 if window_count > 1: samples_with_multiple_windows += 1 # Calculate word split statistics word_split_percentage = (total_words_split_across_windows / total_words_processed * 100) if total_words_processed > 0 else 0 logger.info(f"=== Subword Sliding Window Statistics ===") logger.info(f" Original samples: {total_original_samples}") logger.info(f" Total windows created: {total_windows}") logger.info(f" Samples split into multiple windows: {samples_with_multiple_windows}") logger.info(f" Average windows per sample: {total_windows / total_original_samples:.2f}") logger.info(f"=== Word Split Analysis ===") logger.info(f" Total words processed: {total_words_processed:,}") logger.info(f" Words split across windows: {total_words_split_across_windows:,}") logger.info(f" Word split rate: {word_split_percentage:.2f}%") logger.info(f" Samples with split words: {samples_with_split_words} / {total_original_samples}") if word_split_percentage > 10.0: logger.warning(f" HIGH WORD SPLIT RATE: {word_split_percentage:.1f}% - consider larger overlap") elif word_split_percentage > 5.0: logger.warning(f" Moderate word splitting: {word_split_percentage:.1f}% - monitor model performance") else: logger.info(f" Excellent word preservation: {100 - word_split_percentage:.1f}% of words intact") logger.info(f"✅ ZERO DATA LOSS: All subword tokens processed exactly once") logger.info(f"📋 BERT PAPER APPROACH: Only first subtokens carry labels for training/evaluation") return windowed_data def __len__(self): return len(self.processed_data) def __getitem__(self, idx): window_data = self.processed_data[idx] subword_tokens = window_data['subword_tokens'] subword_labels = window_data['subword_labels'] # Convert subword tokens to padded tensors (no tokenization needed!) input_ids = subword_tokens[:self.max_length] # Guaranteed to fit # Pad to max_length if needed pad_token_id = self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id while len(input_ids) < self.max_length: input_ids.append(pad_token_id) # Create attention mask (1 for real tokens, 0 for padding) attention_mask = [1 if token != pad_token_id else 0 for token in input_ids] # Pad labels to match labels = subword_labels[:self.max_length] while len(labels) < self.max_length: labels.append(-100) # Ignore padding tokens in loss return { 'input_ids': torch.tensor(input_ids, dtype=torch.long), 'attention_mask': torch.tensor(attention_mask, dtype=torch.long), 'labels': torch.tensor(labels, dtype=torch.long), 'original_tokens': window_data['original_words'], # Original words for reference 'original_labels': window_data['original_labels'], # Original word labels # Add window metadata for evaluation aggregation 'sample_id': window_data['sample_id'], 'window_id': window_data['window_id'], 'total_windows': window_data['total_windows'], 'window_start': window_data['window_start'], 'window_end': window_data['window_end'] } class TransformerInstructionClassifier(nn.Module): def __init__(self, model_name: str = 'xlm-roberta-base', num_labels: int = 2, class_weights=None, loss_type='weighted_ce', dropout: float = 0.1): super().__init__() self.num_labels = num_labels self.loss_type = loss_type # Load pre-trained transformer model (XLM-RoBERTa, ModernBERT, etc.) self.bert = AutoModel.from_pretrained(model_name) self.dropout = nn.Dropout(dropout) # Classification head self.classifier = nn.Linear(self.bert.config.hidden_size, num_labels) # Setup loss function based on type if loss_type == 'weighted_ce': self.loss_fct = nn.CrossEntropyLoss(ignore_index=-100, weight=class_weights) elif loss_type == 'focal': self.loss_fct = FocalLoss(alpha=1, gamma=2, ignore_index=-100) else: self.loss_fct = nn.CrossEntropyLoss(ignore_index=-100) def forward(self, input_ids, attention_mask, labels=None): # Get BERT outputs outputs = self.bert( input_ids=input_ids, attention_mask=attention_mask ) # Get last hidden state last_hidden_state = outputs.last_hidden_state # Apply dropout last_hidden_state = self.dropout(last_hidden_state) # Classification logits = self.classifier(last_hidden_state) loss = None if labels is not None: logger = logging.getLogger(__name__) # Check for NaN in inputs before loss calculation if torch.isnan(logits).any(): logger.warning("NaN detected in logits!") if torch.isnan(labels.float()).any(): logger.warning("NaN detected in labels!") loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) # Check if loss is NaN if torch.isnan(loss): logger.warning("NaN loss detected!") logger.warning(f"Logits stats: min={logits.min()}, max={logits.max()}, mean={logits.mean()}") logger.warning(f"Labels unique values: {torch.unique(labels[labels != -100])}") return { 'loss': loss, 'logits': logits } def collate_fn(batch): """Custom collate function for DataLoader""" input_ids = torch.stack([item['input_ids'] for item in batch]) attention_mask = torch.stack([item['attention_mask'] for item in batch]) labels = torch.stack([item['labels'] for item in batch]) return { 'input_ids': input_ids, 'attention_mask': attention_mask, 'labels': labels, 'original_tokens': [item['original_tokens'] for item in batch], 'original_labels': [item['original_labels'] for item in batch], # Add window metadata 'sample_ids': [item['sample_id'] for item in batch], 'window_ids': [item['window_id'] for item in batch], 'total_windows': [item['total_windows'] for item in batch], 'window_starts': [item['window_start'] for item in batch], 'window_ends': [item['window_end'] for item in batch] } def predict_instructions(model, tokenizer, text: str, device=None): """Predict instructions in a given text""" # Auto-detect device if not provided if device is None: if torch.backends.mps.is_available(): device = torch.device('mps') elif torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') model.eval() # Keep original casing since XLM-RoBERTa is case-sensitive # text = text.lower() # Removed for cased model tokens = text.split() # Tokenize encoded = tokenizer( tokens, is_split_into_words=True, padding='max_length', truncation=True, max_length=512, return_tensors='pt' ) input_ids = encoded['input_ids'].to(device) attention_mask = encoded['attention_mask'].to(device) with torch.no_grad(): outputs = model(input_ids=input_ids, attention_mask=attention_mask) predictions = torch.argmax(outputs['logits'], dim=-1) # Align predictions with original tokens word_ids = encoded.word_ids() word_predictions = [] prev_word_id = None for i, word_id in enumerate(word_ids): if word_id is not None and word_id != prev_word_id: if word_id < len(tokens): word_predictions.append(predictions[0][i].item()) prev_word_id = word_id return tokens, word_predictions def get_device(): """Get the best available device""" if torch.backends.mps.is_available(): return torch.device('mps') elif torch.cuda.is_available(): return torch.device('cuda') else: return torch.device('cpu')