import gradio as gr import numpy as np import random import gc import json import torch import spaces from diffusers import Lumina2Text2ImgPipeline device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "Alpha-VLLM/Lumina-Image-2.0" if torch.cuda.is_available(): torch_dtype = torch.bfloat16 else: torch_dtype = torch.float32 pipe = Lumina2Text2ImgPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1536 @spaces.GPU(duration=65) def infer( prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=4.0, num_inference_steps=50, cfg_normalization=True, cfg_trunc_ratio=0.25, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, cfg_normalization=cfg_normalization, cfg_trunc_ratio=cfg_trunc_ratio, generator=generator, ).images[0] return image, seed examples = [ "A serene photograph capturing the golden reflection of the sun on a vast expanse of water. The sun is positioned at the top center, casting a brilliant, shimmering trail of light across the rippling surface. The water is textured with gentle waves, creating a rhythmic pattern that leads the eye towards the horizon. The entire scene is bathed in warm, golden hues, enhancing the tranquil and meditative atmosphere. High contrast, natural lighting, golden hour, photorealistic, expansive composition, reflective surface, peaceful, visually harmonious.", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # [Lumina Image v2.0](https://huggingface.co/Alpha-VLLM/Lumina-Image-2.0) by [Alpha-VLLM](https://huggingface.co/Alpha-VLLM)") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) with gr.Row(): cfg_normalization = gr.Checkbox( label="CFG Normalization", value=True ) cfg_trunc_ratio = gr.Slider( label="CFG Truncation Ratio", minimum=0.0, maximum=1.0, step=0.05, value=0.25, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=7.5, step=0.1, value=4.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=50, ) gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy") gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, cfg_normalization, cfg_trunc_ratio, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()