Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,466 Bytes
6e5e1d5 f423428 fd83843 6e5e1d5 fd83843 4b66118 fd83843 6e5e1d5 fd83843 6e5e1d5 fd83843 4b66118 fd83843 f423428 fd83843 6e5e1d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
import numpy as np
import random
import gc
import json
import torch
import spaces
from diffusers import AutoencoderKL, SD3Transformer2DModel, StableDiffusion3Pipeline
from diffusers.loaders.single_file_utils import convert_sd3_transformer_checkpoint_to_diffusers
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTextModelWithProjection,
CLIPTokenizer,
T5EncoderModel,
T5Tokenizer
)
from accelerate import init_empty_weights
from safetensors import safe_open
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
finetune_repo_id = "DoctorDiffusion/Absynth-2.0"
finetune_filename = "Absynth_SD3.5L_2.0.safetensors"
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
# Initialize transformer
config_file = hf_hub_download(repo_id=model_repo_id, filename="transformer/config.json")
with open(config_file, "r") as fp:
config = json.loads(fp)
with init_empty_weights():
transformer = SD3Transformer2DModel.from_config(config)
# Get transformer state dict and load
model_file = hf_hub_download(repo_id=finetune_repo_id, filename=finetune_filename)
state_dict = {}
with safe_open(model_file, framework="pt") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
state_dict = convert_sd3_transformer_checkpoint_to_diffusers(state_dict)
transformer.load_state_dict(state_dict)
# Try to keep memory usage down
del state_dict
gc.collect()
# Initialize models from base SD3.5
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae")
text_encoder = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder")
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder_2")
text_encoder_3 = T5EncoderModel.from_pretrained(model_repo_id, subfolder="text_encoder_3")
tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer")
tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_2")
tokenizer_3 = T5Tokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_3")
# Create pipeline from our models
pipe = StableDiffusion3Pipeline(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
text_encoder_3=text_encoder_3,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
tokenizer_3=tokenizer_3,
transformer=transformer
)
pipe = pipe.to(device, dtype=torch_dtype)
# The rest of the code is from the official SD3.5 space
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=65)
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=4.5,
num_inference_steps=40,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"A capybara wearing a suit holding a sign that reads Hello World",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # [Stable Diffusion 3.5 Large (8B)](https://huggingface.co/stabilityai/stable-diffusion-3.5-large)")
gr.Markdown("[Learn more](https://stability.ai/news/introducing-stable-diffusion-3-5) about the Stable Diffusion 3.5 series. Try on [Stability AI API](https://platform.stability.ai/docs/api-reference#tag/Generate/paths/~1v2beta~1stable-image~1generate~1sd3/post), or [download model](https://huggingface.co/stabilityai/stable-diffusion-3.5-large) to run locally with ComfyUI or diffusers.")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=4.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=40,
)
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|