File size: 5,071 Bytes
6e5e1d5
 
 
f423428
fd83843
6e5e1d5
fd83843
 
add09dc
6e5e1d5
 
add09dc
 
6e5e1d5
 
 
 
 
 
add09dc
fd83843
6e5e1d5
a9bb828
6e5e1d5
 
 
 
 
 
 
 
 
add09dc
 
 
 
6e5e1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
add09dc
 
6e5e1d5
 
 
 
 
 
 
add09dc
6e5e1d5
 
 
 
 
 
 
 
 
 
 
add09dc
6e5e1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
add09dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e5e1d5
 
 
 
 
 
 
 
add09dc
6e5e1d5
 
 
 
 
 
 
add09dc
6e5e1d5
 
 
 
 
 
 
 
add09dc
6e5e1d5
 
 
 
 
add09dc
6e5e1d5
add09dc
6e5e1d5
 
 
a9bb828
6e5e1d5
 
 
 
 
 
 
 
 
 
 
 
add09dc
 
6e5e1d5
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import gradio as gr
import numpy as np
import random
import gc
import json
import torch
import spaces

from diffusers import Lumina2Text2ImgPipeline

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "Alpha-VLLM/Lumina-Image-2.0"


if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
else:
    torch_dtype = torch.float32

pipe = Lumina2Text2ImgPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1536

@spaces.GPU(duration=65)
def infer(
    prompt,
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    guidance_scale=4.0,
    num_inference_steps=50,
    cfg_normalization=True,
    cfg_trunc_ratio=0.25,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        cfg_normalization=cfg_normalization,
        cfg_trunc_ratio=cfg_trunc_ratio,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "A serene photograph capturing the golden reflection of the sun on a vast expanse of water. The sun is positioned at the top center, casting a brilliant, shimmering trail of light across the rippling surface. The water is textured with gentle waves, creating a rhythmic pattern that leads the eye towards the horizon. The entire scene is bathed in warm, golden hues, enhancing the tranquil and meditative atmosphere. High contrast, natural lighting, golden hour, photorealistic, expansive composition, reflective surface, peaceful, visually harmonious.",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # [Lumina Image v2.0](https://huggingface.co/Alpha-VLLM/Lumina-Image-2.0) by [Alpha-VLLM](https://huggingface.co/Alpha-VLLM)")
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            with gr.Row():
                cfg_normalization = gr.Checkbox(
                    label="CFG Normalization",
                    value=True
                )
                
                cfg_trunc_ratio = gr.Slider(
                    label="CFG Truncation Ratio",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    value=0.25,
                )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024, 
                )

                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=7.5,
                    step=0.1,
                    value=4.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=100,
                    step=1,
                    value=50, 
                )

        gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            cfg_normalization,
            cfg_trunc_ratio,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()