SKB-Explorer / interactive /pyvis_graph.py
devStorm
feat: ✨ update amazon metadata
d123e86 unverified
raw
history blame
11 kB
import sys
import json
import torch
import gradio as gr
from pyvis.network import Network
sys.path.append(".")
import re
from src.benchmarks import get_semistructured_data
CONCURRENCY_LIMIT = 1000
TITLE = "STaRK Semistructure Knowledge Base Explorer"
BRAND_NAME = {
"amazon": "STaRK-Amazon",
"mag": "STaRK-MAG",
"primekg": "STaRK-Prime",
}
NODE_COLORS = [
"#4285F4", # Blue
"#F4B400", # Yellow
"#0F9D58", # Green
"#00796B", # Teal
"#03A9F4", # Light Blue
"#CDDC39", # Lime
"#3F51B5", # Indigo
"#00BCD4", # Cyan
"#FFC107", # Amber
"#8BC34A", # Light Green
"#9E9E9E", # Grey
"#607D8B", # Blue Grey
"#FFEB3B", # Bright Yellow
"#E1F5FE", # Light Blue 50
"#F1F8E9", # Light Green 50
"#FFF3E0", # Orange 50
"#FFFDE7", # Yellow 50
"#E0F7FA", # Cyan 50
"#E8F5E9", # Green 50
"#E3F2FD", # Blue 50
"#FFF8E1", # Amber 50
"#E0F2F1", # Teal 50
"#F9FBE7", # Lime 50
]
EDGE_COLORS = [
"#1B5E20", # Green 900
"#004D40", # Teal 900
"#1A237E", # Indigo 900
"#3E2723", # Brown 900
"#880E4F", # Pink 900
"#01579B", # Light Blue 900
"#F57F17", # Yellow 900
"#FF6F00", # Amber 900
"#4A148C", # Purple 900
"#0D47A1", # Blue 900
"#006064", # Cyan 900
"#827717", # Lime 900
"#E8EAF6", # Indigo 50
"#ECEFF1", # Blue Grey 50
"#9C27B0", # Purple
"#311B92", # Deep Purple 900
"#673AB7", # Deep Purple
"#EDE7F6", # Deep Purple 50
]
VISJS_HEAD = """
<script src="https://cdnjs.cloudflare.com/ajax/libs/vis-network/9.1.9/dist/vis-network.min.js" integrity="sha512-4/EGWWWj7LIr/e+CvsslZkRk0fHDpf04dydJHoHOH32Mpw8jYU28GNI6mruO7fh/1kq15kSvwhKJftMSlgm0FA==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/vis-network/9.1.9/dist/dist/vis-network.min.css" integrity="sha512-WgxfT5LWjfszlPHXRmBWHkV2eceiWTOBvrKCNbdgDYTHrT2AeLCGbF4sZlZw3UMN3WtL0tGUoIAKsu8mllg/XA==" crossorigin="anonymous" referrerpolicy="no-referrer" />
<style type="text/css"> .graph-area { flex-basis: 30% !important; } .network-graph { width: 100%; height: 600px; background-color: #ffffff; border: 1px solid lightgray; position: relative; float: left; } </style>
"""
with open("interactive/draw_graph.js", "r") as f:
VISJS_HEAD += f"<script>{f.read()}</script>"
def relabel(x, edge_index, batch, pos=None):
num_nodes = x.size(0)
sub_nodes = torch.unique(edge_index)
x = x[sub_nodes]
batch = batch[sub_nodes]
row, col = edge_index
# remapping the nodes in the explanatory subgraph to new ids.
node_idx = row.new_full((num_nodes,), -1)
node_idx[sub_nodes] = torch.arange(sub_nodes.size(0), device=row.device)
edge_index = node_idx[edge_index]
if pos is not None:
pos = pos[sub_nodes]
return x, edge_index, batch, pos
def generate_network(kb, node_id, max_nodes=10, num_hops='2'):
max_nodes = int(max_nodes)
if 'gene/protein' in kb.node_type_dict.values():
indirected = True
net = Network(directed=False)
else:
indirected = False
net = Network()
def get_one_hop(kb, node_id, max_nodes):
edge_index = kb.edge_index
mask = (
torch.Tensor(edge_index[0] == node_id).float()
+ torch.Tensor(edge_index[1] == node_id).float()
) > 0
edge_index_with_node_id = edge_index[:, mask]
edge_types = kb.edge_types[mask]
# take the edge index with
# ramdomly sample max_nodes edges
if edge_index_with_node_id.size(1) > max_nodes:
perm = torch.randperm(edge_index_with_node_id.size(1))
edge_index_with_node_id = edge_index_with_node_id[:, perm[:max_nodes]]
edge_types = edge_types[perm[:max_nodes]]
return edge_index_with_node_id, edge_types
if num_hops == "1":
edge_index, edge_types = get_one_hop(kb, node_id, max_nodes)
if num_hops == "2":
edge_index, edge_types = get_one_hop(kb, node_id, max_nodes)
neighbor_nodes = torch.unique(edge_index).tolist()
if node_id in neighbor_nodes:
neighbor_nodes.remove(node_id)
for neighbor_node in neighbor_nodes:
e_index, e_type = get_one_hop(kb, neighbor_node, max_nodes=1)
edge_index = torch.cat([edge_index, e_index], dim=1)
edge_types = torch.cat([edge_types, e_type], dim=0)
if num_hops == "inf":
edge_index, edge_types = kb.edge_index, kb.edge_types
# sample max_nodes edges
if edge_index.size(1) > max_nodes:
perm = torch.randperm(edge_index.size(1))
edge_index = edge_index[:, perm[:max_nodes]]
edge_types = edge_types[perm[:max_nodes]]
add_edge_index, add_edge_types = get_one_hop(kb, node_id, max_nodes=1)
edge_index = torch.cat([edge_index, add_edge_index], dim=1)
edge_types = torch.cat([edge_types, add_edge_types], dim=0)
# add a self-loop for node_id to avoid isolated node
edge_index = torch.concat([edge_index, torch.LongTensor([[node_id], [node_id]])], dim=1)
node_ids, relabel_edge_index, _, _ = relabel(
torch.arange(kb.num_nodes()), edge_index, batch=torch.zeros(kb.num_nodes())
)
for idx, n_id in enumerate(node_ids):
if node_id == n_id:
net.add_node(
idx,
node_id=n_id.item(),
color="#DB4437",
size=20,
label=f"{kb.node_type_dict[kb.node_types[n_id].item()]}<{n_id}>",
font={"align": "middle", "size": 10},
)
else:
net.add_node(
idx,
node_id=n_id.item(),
size=15,
color=NODE_COLORS[kb.node_types[n_id].item()],
label=f"{kb.node_type_dict[kb.node_types[n_id].item()]}",
font={"align": "middle", "size": 10},
)
for idx in range(relabel_edge_index.size(-1)):
if relabel_edge_index[0][idx].item() == relabel_edge_index[1][idx].item():
continue
if indirected:
net.add_edge(
relabel_edge_index[0][idx].item(),
relabel_edge_index[1][idx].item(),
color=EDGE_COLORS[edge_types[idx].item()],
label=kb.edge_type_dict[edge_types[idx].item()]
.replace('___', " ")
.replace('_', " "),
width=1,
font={"align": "middle", "size": 10})
else:
net.add_edge(
relabel_edge_index[0][idx].item(),
relabel_edge_index[1][idx].item(),
color=EDGE_COLORS[edge_types[idx].item()],
label=kb.edge_type_dict[edge_types[idx].item()]
.replace('___', " ")
.replace('_', " "),
width=1,
font={"align": "middle", "size": 10},
arrows="to",
arrowStrikethrough=False)
return net.get_network_data()
def get_text_html(kb, node_id):
text = kb.get_doc_info(node_id, add_rel=False, compact=False)
# add a title
text = text.replace("\n", "<br>").replace(" ", "&nbsp;")
text = f"<h3>Textual Info of Entity {node_id}:</h3>{text}"
text = re.sub(r"\$([^$]+)\$", r"\\(\1\\)", text)
# show the text as what it is with empty space and can be scrolled
return f"""<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<div style="width: 100%; height: 600px; overflow-x: hidden; overflow-y: scroll; overflow-wrap: break-word; hyphens: auto; padding: 10px; margin: 0 auto; border: 1px solid #ccc; line-height: 1.5;
font-family: SF Pro Text, SF Pro Icons, Helvetica Neue, Helvetica, Arial, sans-serif;">{text}</div>"""
def get_subgraph_html(kb, kb_name, node_id, max_nodes=10, num_hops='1'):
network = generate_network(kb, node_id, max_nodes, num_hops)
nodes = network[0]
edges = network[1]
# A dirty hack to trigger the drawGraph function ;)
# Have to do it this way because of the way Gradio handles HTML updates
figure_html = f"""
<div id="{kb_name}-network" class="network-graph"></div>
<img src="/dummy.img" style="display: none;" onerror='drawGraph({json.dumps({"nodes": nodes, "edges": edges, "dataset": kb_name})});'>
"""
return figure_html
def main():
# kb = get_semistructured_data(DATASET_NAME)
kbs = {k: get_semistructured_data(k, indirected=False) for k in BRAND_NAME.keys()}
with gr.Blocks(head=VISJS_HEAD, title=TITLE) as demo:
gr.Markdown(f"# {TITLE}")
for name, kb in kbs.items():
with gr.Tab(BRAND_NAME[name]):
with gr.Row():
entity_id = gr.Number(
label="Entity ID",
elem_id=f"{name}-entity-id-input"
)
max_paths = gr.Slider(
1, 200, 10, step=1, label="Max Number of Paths"
)
num_hops = gr.Dropdown(
["1", "2", "inf"], value="2", label="Number of Hops"
)
query_btn = gr.Button(
value="Show Graph",
variant="primary",
elem_id=f"{name}-fetch-btn",
)
with gr.Row():
graph_area = gr.HTML(elem_classes="graph-area")
text_area = gr.HTML(elem_classes="text-area")
query_btn.click(
# copy capture current kb and name
lambda e, n, h, kb=kb, name=name: (
get_subgraph_html(kb, name, e, n, h),
get_text_html(kb, e),
),
inputs=[entity_id, max_paths, num_hops],
outputs=[graph_area, text_area],
api_name=f"{name}-fetch-graph"
)
# Hidden inputs for fetch just text
with gr.Row(visible=False):
entity_for_text = gr.Number(
label="Text Entity ID", elem_id=f"{name}-entity-id-text-input"
)
query_text_btn = gr.Button(
value="Show Text", elem_id=f"{name}-fetch-text-btn"
)
query_text_btn.click(
lambda e, kb=kb: get_text_html(kb, e),
inputs=[entity_for_text],
outputs=text_area,
api_name=f"{name}-fetch-text"
)
demo.queue(max_size=2*CONCURRENCY_LIMIT, default_concurrency_limit=CONCURRENCY_LIMIT)
demo.launch(share=True)
if __name__ == "__main__":
main()