Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -35,57 +35,48 @@ from diffusers import (
|
|
| 35 |
|
| 36 |
device = gr.State("cuda")
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
revision = None
|
| 46 |
-
rank = 1
|
| 47 |
-
weight_dtype = torch.bfloat16
|
| 48 |
-
|
| 49 |
-
# Load scheduler, tokenizer and models.
|
| 50 |
-
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
|
| 51 |
torch_dtype=torch.float16,safety_checker = None,
|
| 52 |
requires_safety_checker = False).to(device.value)
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
|
| 57 |
)
|
| 58 |
-
|
| 59 |
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
|
| 60 |
)
|
| 61 |
-
|
| 62 |
-
|
| 63 |
pretrained_model_name_or_path, subfolder="unet", revision=revision
|
| 64 |
)
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
|
| 76 |
-
return unet, vae, text_encoder, tokenizer, noise_scheduler
|
| 77 |
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
|
| 81 |
-
generator = gr.State()
|
| 82 |
-
unet = gr.State()
|
| 83 |
-
vae = gr.State()
|
| 84 |
-
text_encoder = gr.State()
|
| 85 |
-
tokenizer = gr.State()
|
| 86 |
-
noise_scheduler = gr.State()
|
| 87 |
network = gr.State()
|
| 88 |
-
|
| 89 |
|
| 90 |
|
| 91 |
models_path = snapshot_download(repo_id="Snapchat/w2w")
|
|
|
|
| 35 |
|
| 36 |
device = gr.State("cuda")
|
| 37 |
|
| 38 |
+
pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51"
|
| 39 |
+
revision = None
|
| 40 |
+
rank = 1
|
| 41 |
+
weight_dtype = torch.bfloat16
|
| 42 |
+
# Load scheduler, tokenizer and models.
|
| 43 |
+
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
torch_dtype=torch.float16,safety_checker = None,
|
| 45 |
requires_safety_checker = False).to(device.value)
|
| 46 |
+
noise_scheduler = pipe.scheduler
|
| 47 |
+
del pipe
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 49 |
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
|
| 50 |
)
|
| 51 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
| 52 |
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
|
| 53 |
)
|
| 54 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
|
| 55 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 56 |
pretrained_model_name_or_path, subfolder="unet", revision=revision
|
| 57 |
)
|
| 58 |
|
| 59 |
+
unet.requires_grad_(False)
|
| 60 |
+
unet.to(device.value, dtype=weight_dtype)
|
| 61 |
+
vae.requires_grad_(False)
|
| 62 |
|
| 63 |
+
text_encoder.requires_grad_(False)
|
| 64 |
+
vae.requires_grad_(False)
|
| 65 |
+
vae.to(device.value, dtype=weight_dtype)
|
| 66 |
+
text_encoder.to(device.value, dtype=weight_dtype)
|
| 67 |
+
print("")
|
| 68 |
|
|
|
|
| 69 |
|
| 70 |
|
| 71 |
+
unet = gr.State(unet)
|
| 72 |
+
vae = gr.State(vae)
|
| 73 |
+
text_encoder = gr.State(text_encoder)
|
| 74 |
+
tokenizer = gr.State(tokenizer)
|
| 75 |
+
noise_scheduler = gr.State(noise_scheduler)
|
| 76 |
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
network = gr.State()
|
| 79 |
+
|
| 80 |
|
| 81 |
|
| 82 |
models_path = snapshot_download(repo_id="Snapchat/w2w")
|