Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -159,39 +159,39 @@ def inference(net, prompt, negative_prompt, guidance_scale, ddim_steps, seed):
|
|
| 159 |
|
| 160 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 161 |
latents = torch.randn(
|
| 162 |
-
(1,
|
| 163 |
generator = generator,
|
| 164 |
-
device =
|
| 165 |
).bfloat16()
|
| 166 |
|
| 167 |
|
| 168 |
-
text_input = self.tokenizer(prompt, padding="max_length", max_length=
|
| 169 |
|
| 170 |
-
text_embeddings =
|
| 171 |
|
| 172 |
max_length = text_input.input_ids.shape[-1]
|
| 173 |
-
uncond_input =
|
| 174 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
| 175 |
)
|
| 176 |
-
uncond_embeddings =
|
| 177 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]).bfloat16()
|
| 178 |
-
|
| 179 |
latents = latents * self.noise_scheduler.init_noise_sigma
|
| 180 |
|
| 181 |
-
for i,t in enumerate(tqdm.tqdm(
|
| 182 |
latent_model_input = torch.cat([latents] * 2)
|
| 183 |
-
latent_model_input =
|
| 184 |
|
| 185 |
with network:
|
| 186 |
-
noise_pred =
|
| 187 |
|
| 188 |
#guidance
|
| 189 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 190 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 191 |
-
latents =
|
| 192 |
|
| 193 |
latents = 1 / 0.18215 * latents
|
| 194 |
-
image =
|
| 195 |
image = (image / 2 + 0.5).clamp(0, 1)
|
| 196 |
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
| 197 |
|
|
|
|
| 159 |
|
| 160 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 161 |
latents = torch.randn(
|
| 162 |
+
(1, unet.in_channels, 512 // 8, 512 // 8),
|
| 163 |
generator = generator,
|
| 164 |
+
device = device
|
| 165 |
).bfloat16()
|
| 166 |
|
| 167 |
|
| 168 |
+
text_input = self.tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
| 169 |
|
| 170 |
+
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
|
| 171 |
|
| 172 |
max_length = text_input.input_ids.shape[-1]
|
| 173 |
+
uncond_input = tokenizer(
|
| 174 |
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
|
| 175 |
)
|
| 176 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
|
| 177 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]).bfloat16()
|
| 178 |
+
noise_scheduler.set_timesteps(ddim_steps)
|
| 179 |
latents = latents * self.noise_scheduler.init_noise_sigma
|
| 180 |
|
| 181 |
+
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)):
|
| 182 |
latent_model_input = torch.cat([latents] * 2)
|
| 183 |
+
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
|
| 184 |
|
| 185 |
with network:
|
| 186 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
|
| 187 |
|
| 188 |
#guidance
|
| 189 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 190 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 191 |
+
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
|
| 192 |
|
| 193 |
latents = 1 / 0.18215 * latents
|
| 194 |
+
image = vae.decode(latents.float()).sample
|
| 195 |
image = (image / 2 + 0.5).clamp(0, 1)
|
| 196 |
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
|
| 197 |
|