Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -121,7 +121,7 @@ def edit_inference(prompt, negative_prompt, guidance_scale, ddim_steps, seed, st
|
|
| 121 |
global young
|
| 122 |
global pointy
|
| 123 |
global wavy
|
| 124 |
-
global
|
| 125 |
|
| 126 |
original_weights = network.proj.clone()
|
| 127 |
|
|
@@ -132,10 +132,10 @@ def edit_inference(prompt, negative_prompt, guidance_scale, ddim_steps, seed, st
|
|
| 132 |
young_pad = torch.cat((young, padding), 1)
|
| 133 |
pointy_pad = torch.cat((pointy, padding), 1)
|
| 134 |
wavy_pad = torch.cat((wavy, padding), 1)
|
| 135 |
-
|
| 136 |
|
| 137 |
|
| 138 |
-
edited_weights = original_weights+a1*1e6*young_pad+a2*1e6*pointy_pad+a3*1e6*wavy_pad+a4*2e6*
|
| 139 |
|
| 140 |
generator = generator.manual_seed(seed)
|
| 141 |
latents = torch.randn(
|
|
@@ -200,7 +200,7 @@ def sample_then_run():
|
|
| 200 |
negative_prompt = "low quality, blurry, unfinished, nudity, weapon"
|
| 201 |
seed = 5
|
| 202 |
cfg = 3.0
|
| 203 |
-
steps =
|
| 204 |
image = inference( prompt, negative_prompt, cfg, steps, seed)
|
| 205 |
torch.save(network.proj, "model.pt" )
|
| 206 |
return image, "model.pt"
|
|
@@ -209,7 +209,7 @@ def sample_then_run():
|
|
| 209 |
global young
|
| 210 |
global pointy
|
| 211 |
global wavy
|
| 212 |
-
global
|
| 213 |
|
| 214 |
young = get_direction(df, "Young", pinverse, 1000, device)
|
| 215 |
young = debias(young, "Male", df, pinverse, device)
|
|
@@ -235,20 +235,20 @@ wavy = debias(wavy, "Chubby", df, pinverse, device)
|
|
| 235 |
wavy = debias(wavy, "Heavy_Makeup", df, pinverse, device)
|
| 236 |
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
|
| 253 |
|
| 254 |
|
|
@@ -343,7 +343,7 @@ def run_inversion(dict, pcs, epochs, weight_decay,lr):
|
|
| 343 |
negative_prompt = "low quality, blurry, unfinished, nudity"
|
| 344 |
seed = 5
|
| 345 |
cfg = 3.0
|
| 346 |
-
steps =
|
| 347 |
image = inference( prompt, negative_prompt, cfg, steps, seed)
|
| 348 |
torch.save(network.proj, "model.pt" )
|
| 349 |
return image, "model.pt"
|
|
@@ -368,7 +368,7 @@ def file_upload(file):
|
|
| 368 |
unet, _, _, _, _ = load_models(device)
|
| 369 |
|
| 370 |
|
| 371 |
-
network = LoRAw2w( proj, mean, std, v[:, :
|
| 372 |
unet,
|
| 373 |
rank=1,
|
| 374 |
multiplier=1.0,
|
|
@@ -381,7 +381,7 @@ def file_upload(file):
|
|
| 381 |
negative_prompt = "low quality, blurry, unfinished, nudity"
|
| 382 |
seed = 5
|
| 383 |
cfg = 3.0
|
| 384 |
-
steps =
|
| 385 |
image = inference( prompt, negative_prompt, cfg, steps, seed)
|
| 386 |
return image
|
| 387 |
|
|
|
|
| 121 |
global young
|
| 122 |
global pointy
|
| 123 |
global wavy
|
| 124 |
+
global thick
|
| 125 |
|
| 126 |
original_weights = network.proj.clone()
|
| 127 |
|
|
|
|
| 132 |
young_pad = torch.cat((young, padding), 1)
|
| 133 |
pointy_pad = torch.cat((pointy, padding), 1)
|
| 134 |
wavy_pad = torch.cat((wavy, padding), 1)
|
| 135 |
+
thick_pad = torch.cat((thick, padding), 1)
|
| 136 |
|
| 137 |
|
| 138 |
+
edited_weights = original_weights+a1*1e6*young_pad+a2*1e6*pointy_pad+a3*1e6*wavy_pad+a4*2e6*thick_pad
|
| 139 |
|
| 140 |
generator = generator.manual_seed(seed)
|
| 141 |
latents = torch.randn(
|
|
|
|
| 200 |
negative_prompt = "low quality, blurry, unfinished, nudity, weapon"
|
| 201 |
seed = 5
|
| 202 |
cfg = 3.0
|
| 203 |
+
steps = 25
|
| 204 |
image = inference( prompt, negative_prompt, cfg, steps, seed)
|
| 205 |
torch.save(network.proj, "model.pt" )
|
| 206 |
return image, "model.pt"
|
|
|
|
| 209 |
global young
|
| 210 |
global pointy
|
| 211 |
global wavy
|
| 212 |
+
global thick
|
| 213 |
|
| 214 |
young = get_direction(df, "Young", pinverse, 1000, device)
|
| 215 |
young = debias(young, "Male", df, pinverse, device)
|
|
|
|
| 235 |
wavy = debias(wavy, "Heavy_Makeup", df, pinverse, device)
|
| 236 |
|
| 237 |
|
| 238 |
+
thick = get_direction(df, "Bushy_Eyebrows", pinverse, 1000, device)
|
| 239 |
+
thick = debias(thick, "Male", df, pinverse, device)
|
| 240 |
+
thick = debias(thick, "Young", df, pinverse, device)
|
| 241 |
+
thick = debias(thick, "Pointy_Nose", df, pinverse, device)
|
| 242 |
+
thick = debias(thick, "Wavy_Hair", df, pinverse, device)
|
| 243 |
+
thick = debias(thick, "Mustache", df, pinverse, device)
|
| 244 |
+
thick = debias(thick, "No_Beard", df, pinverse, device)
|
| 245 |
+
thick = debias(thick, "Sideburns", df, pinverse, device)
|
| 246 |
+
thick = debias(thick, "Big_Nose", df, pinverse, device)
|
| 247 |
+
thick = debias(thick, "Big_Lips", df, pinverse, device)
|
| 248 |
+
thick = debias(thick, "Black_Hair", df, pinverse, device)
|
| 249 |
+
thick = debias(thick, "Brown_Hair", df, pinverse, device)
|
| 250 |
+
thick = debias(thick, "Pale_Skin", df, pinverse, device)
|
| 251 |
+
thick = debias(thick, "Heavy_Makeup", df, pinverse, device)
|
| 252 |
|
| 253 |
|
| 254 |
|
|
|
|
| 343 |
negative_prompt = "low quality, blurry, unfinished, nudity"
|
| 344 |
seed = 5
|
| 345 |
cfg = 3.0
|
| 346 |
+
steps = 25
|
| 347 |
image = inference( prompt, negative_prompt, cfg, steps, seed)
|
| 348 |
torch.save(network.proj, "model.pt" )
|
| 349 |
return image, "model.pt"
|
|
|
|
| 368 |
unet, _, _, _, _ = load_models(device)
|
| 369 |
|
| 370 |
|
| 371 |
+
network = LoRAw2w( proj, mean, std, v[:, :10000],
|
| 372 |
unet,
|
| 373 |
rank=1,
|
| 374 |
multiplier=1.0,
|
|
|
|
| 381 |
negative_prompt = "low quality, blurry, unfinished, nudity"
|
| 382 |
seed = 5
|
| 383 |
cfg = 3.0
|
| 384 |
+
steps = 25
|
| 385 |
image = inference( prompt, negative_prompt, cfg, steps, seed)
|
| 386 |
return image
|
| 387 |
|