Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
MaskFormerImageProcessor,
|
3 |
+
AutoImageProcessor,
|
4 |
+
MaskFormerForInstanceSegmentation,
|
5 |
+
)
|
6 |
+
import torch
|
7 |
+
from torchvision import transforms
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import gradio as gr
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
processor = AutoImageProcessor.from_pretrained("facebook/maskformer-swin-base-coco")
|
13 |
+
model = MaskFormerForInstanceSegmentation.from_pretrained(
|
14 |
+
"sna89/segmentation_model"
|
15 |
+
)
|
16 |
+
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
model = model.to(device)
|
19 |
+
|
20 |
+
def segment_image(img):
|
21 |
+
img = processor(img, return_tensors="pt")
|
22 |
+
img = img.to(device)
|
23 |
+
with torch.no_grad():
|
24 |
+
outputs = model(**img)
|
25 |
+
|
26 |
+
predicted_semantic_map = processor.post_process_semantic_segmentation(
|
27 |
+
outputs, target_sizes=[image.size[::-1]]
|
28 |
+
)[0]
|
29 |
+
|
30 |
+
fig, ax = plt.subplots(figsize=(5, 5))
|
31 |
+
plt.axis('off')
|
32 |
+
plt.imshow(predicted_semantic_map.to("cpu"))
|
33 |
+
fig.canvas.draw() # Render the figure
|
34 |
+
image_array = np.array(fig.canvas.renderer.buffer_rgba())
|
35 |
+
return image_array
|
36 |
+
# return predicted_semantic_map.to("cpu").numpy()
|
37 |
+
|
38 |
+
demo = gr.Interface(
|
39 |
+
fn=segment_image,
|
40 |
+
inputs=gr.Image(type="pil"),
|
41 |
+
outputs=gr.Image(type="pil"),
|
42 |
+
title="Semantic segmentation for sidewalk dataset",
|
43 |
+
examples=[["image.jpg"], ["image (1).jpg"]],
|
44 |
+
live=True
|
45 |
+
)
|
46 |
+
|
47 |
+
demo.launch(share=True)
|