Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from bertopic import BERTopic
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from transformers import (
|
| 5 |
+
pipeline,
|
| 6 |
+
BlenderbotTokenizer,
|
| 7 |
+
BlenderbotForConditionalGeneration,
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
# Function to load VQA pipeline
|
| 11 |
+
@st.cache(allow_output_mutation=True)
|
| 12 |
+
def load_vqa_pipeline():
|
| 13 |
+
return pipeline(task="visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa")
|
| 14 |
+
|
| 15 |
+
# Function to load BERT-based pipeline
|
| 16 |
+
@st.cache(allow_output_mutation=True)
|
| 17 |
+
def load_bbu_pipeline():
|
| 18 |
+
return pipeline(task="fill-mask", model="bert-base-uncased")
|
| 19 |
+
|
| 20 |
+
# Function to load Blenderbot model
|
| 21 |
+
@st.cache(allow_output_mutation=True)
|
| 22 |
+
def load_blenderbot_model():
|
| 23 |
+
model_name = "facebook/blenderbot-400M-distill"
|
| 24 |
+
tokenizer = BlenderbotTokenizer.from_pretrained(pretrained_model_name_or_path=model_name)
|
| 25 |
+
return BlenderbotForConditionalGeneration.from_pretrained(pretrained_model_name_or_path=model_name)
|
| 26 |
+
|
| 27 |
+
# Function to load GPT-2 pipeline
|
| 28 |
+
@st.cache(allow_output_mutation=True)
|
| 29 |
+
def load_gpt2_pipeline():
|
| 30 |
+
return pipeline(task="text-generation", model="gpt2")
|
| 31 |
+
|
| 32 |
+
# Function to load BERTopic models
|
| 33 |
+
@st.cache(allow_output_mutation=True)
|
| 34 |
+
def load_topic_models():
|
| 35 |
+
topic_model_1 = BERTopic.load(path="davanstrien/chat_topics")
|
| 36 |
+
topic_model_2 = BERTopic.load(path="MaartenGr/BERTopic_ArXiv")
|
| 37 |
+
return topic_model_1, topic_model_2
|
| 38 |
+
|
| 39 |
+
st.title("Georgios Ioannou's Visual Question Answering With Hugging Face")
|
| 40 |
+
st.write("Drag and drop an image file here.")
|
| 41 |
+
|
| 42 |
+
# Allow the user to upload an image file
|
| 43 |
+
image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
| 44 |
+
|
| 45 |
+
if image is not None:
|
| 46 |
+
# Display the uploaded image
|
| 47 |
+
image = Image.open(image)
|
| 48 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 49 |
+
|
| 50 |
+
question = st.text_input("What's your question?")
|
| 51 |
+
|
| 52 |
+
# Load models using the cache
|
| 53 |
+
vqa_pipeline = load_vqa_pipeline()
|
| 54 |
+
bbu_pipeline = load_bbu_pipeline()
|
| 55 |
+
facebook_model = load_blenderbot_model()
|
| 56 |
+
gpt2_pipeline = load_gpt2_pipeline()
|
| 57 |
+
topic_model_1, topic_model_2 = load_topic_models()
|
| 58 |
+
|
| 59 |
+
# Model 1.
|
| 60 |
+
|
| 61 |
+
vqa_pipeline_output = vqa_pipeline(image, question, top_k=5)[0]
|
| 62 |
+
|
| 63 |
+
# Model 2.
|
| 64 |
+
|
| 65 |
+
text = (
|
| 66 |
+
"I love "
|
| 67 |
+
+ str(vqa_pipeline_output["answer"])
|
| 68 |
+
+ " and I would like to know how to [MASK]."
|
| 69 |
+
)
|
| 70 |
+
bbu_pipeline_output = bbu_pipeline(text)
|
| 71 |
+
|
| 72 |
+
# Model 3.
|
| 73 |
+
|
| 74 |
+
utterance = bbu_pipeline_output[0]["sequence"]
|
| 75 |
+
inputs = tokenizer(utterance, return_tensors="pt")
|
| 76 |
+
result = facebook_model.generate(**inputs)
|
| 77 |
+
facebook_model_output = tokenizer.decode(result[0])
|
| 78 |
+
|
| 79 |
+
# Model 4.
|
| 80 |
+
|
| 81 |
+
facebook_model_output = facebook_model_output.replace("<s> ", "")
|
| 82 |
+
facebook_model_output = facebook_model_output.replace("<s>", "")
|
| 83 |
+
facebook_model_output = facebook_model_output.replace("</s>", "")
|
| 84 |
+
gpt2_pipeline_output = gpt2_pipeline(facebook_model_output)[0]["generated_text"]
|
| 85 |
+
|
| 86 |
+
# Model 5.
|
| 87 |
+
|
| 88 |
+
topic, prob = topic_model_1.transform(gpt2_pipeline_output)
|
| 89 |
+
topic_model_1_output = topic_model_1.get_topic_info(topic[0])["Representation"][
|
| 90 |
+
0
|
| 91 |
+
]
|
| 92 |
+
|
| 93 |
+
topic, prob = topic_model_2.transform(gpt2_pipeline_output)
|
| 94 |
+
topic_model_2_output = topic_model_2.get_topic_info(topic[0])["Representation"][
|
| 95 |
+
0
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
st.write("-" * 150)
|
| 99 |
+
st.write("vqa_pipeline_output =", vqa_pipeline_output)
|
| 100 |
+
st.write("bbu_pipeline_output =", bbu_pipeline_output)
|
| 101 |
+
st.write("facebook_model_output =", facebook_model_output)
|
| 102 |
+
st.write("gpt2_pipeline_output =", gpt2_pipeline_output)
|
| 103 |
+
st.write("topic_model_1_output =", topic_model_1_output)
|
| 104 |
+
st.write("topic_model_2_output =", topic_model_2_output)
|
| 105 |
+
st.write("-" * 150)
|
| 106 |
+
|
| 107 |
+
st.write("SUMMARY")
|
| 108 |
+
st.subheader("Your Image:")
|
| 109 |
+
st.image(image, caption="Your Image", use_column_width=True)
|
| 110 |
+
st.subheader("Your Question:")
|
| 111 |
+
st.write(question)
|
| 112 |
+
st.write("-" * 100)
|
| 113 |
+
|
| 114 |
+
st.subheader("1. Highest Predicted Answer For Your Question:")
|
| 115 |
+
st.write(vqa_pipeline_output["answer"])
|
| 116 |
+
st.write(text)
|
| 117 |
+
|
| 118 |
+
st.subheader("2. Highest Predicted Sequence On [MASK] Based on 1.:")
|
| 119 |
+
st.write(bbu_pipeline_output[0]["sequence"])
|
| 120 |
+
|
| 121 |
+
st.subheader("3. Conversation Based On Previous Answer Based on 2.:")
|
| 122 |
+
st.write(facebook_model_output)
|
| 123 |
+
|
| 124 |
+
st.subheader("4. Text Generated Based On Previous Answer Based on 3.:")
|
| 125 |
+
st.write(gpt2_pipeline_output)
|
| 126 |
+
|
| 127 |
+
st.subheader("5. Highest Predicted Topic Model_1 For Previous The Answer Based on 4.:")
|
| 128 |
+
st.write(topic_model_1_output)
|
| 129 |
+
|
| 130 |
+
st.subheader("6. Highest Predicted Topic Model_2 For Previous The Answer Based on 4.:")
|
| 131 |
+
st.write(topic_model_2_output)
|
| 132 |
+
st.write("-" * 150)
|