smhavens commited on
Commit
e369cb0
·
1 Parent(s): cfcfc3c

rename app.py

Browse files
Files changed (1) hide show
  1. main.py → app.py +62 -62
main.py → app.py RENAMED
@@ -1,63 +1,63 @@
1
- import gradio as gr
2
- import spacy
3
- import math
4
- from datasets import load_dataset
5
- from sentence_transformers import SentenceTransformer
6
- from transformers import AutoTokenizer, AutoModel
7
- import torch
8
- import torch.nn.functional as F
9
-
10
-
11
- #Mean Pooling - Take attention mask into account for correct averaging
12
- # def mean_pooling(model_output, attention_mask):
13
- # token_embeddings = model_output[0] #First element of model_output contains all token embeddings
14
- # input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
15
- # return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
16
-
17
-
18
- # def training():
19
- # dataset = load_dataset("glue", "cola")
20
- # dataset = dataset["train"]
21
-
22
- # sentences = ["This is an example sentence", "Each sentence is converted"]
23
-
24
- # model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
25
- # embeddings = model.encode(sentences)
26
- # print(embeddings)
27
-
28
- # # Sentences we want sentence embeddings for
29
- # sentences = ['This is an example sentence', 'Each sentence is converted']
30
-
31
- # # Load model from HuggingFace Hub
32
- # tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
33
- # model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
34
-
35
- # # Tokenize sentences
36
- # encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
37
-
38
- # # Compute token embeddings
39
- # with torch.no_grad():
40
- # model_output = model(**encoded_input)
41
-
42
- # # Perform pooling
43
- # sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
44
-
45
- # # Normalize embeddings
46
- # sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
47
-
48
- # print("Sentence embeddings:")
49
- # print(sentence_embeddings)
50
-
51
-
52
- def greet(name):
53
- return "Hello " + name + "!!"
54
-
55
-
56
- # def main():
57
- # return 0
58
-
59
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
60
- iface.launch()
61
-
62
- # if __name__ == "__main__":
63
  # main()
 
1
+ import gradio as gr
2
+ import spacy
3
+ import math
4
+ from datasets import load_dataset
5
+ from sentence_transformers import SentenceTransformer
6
+ from transformers import AutoTokenizer, AutoModel
7
+ import torch
8
+ import torch.nn.functional as F
9
+
10
+
11
+ #Mean Pooling - Take attention mask into account for correct averaging
12
+ # def mean_pooling(model_output, attention_mask):
13
+ # token_embeddings = model_output[0] #First element of model_output contains all token embeddings
14
+ # input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
15
+ # return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
16
+
17
+
18
+ # def training():
19
+ # dataset = load_dataset("glue", "cola")
20
+ # dataset = dataset["train"]
21
+
22
+ # sentences = ["This is an example sentence", "Each sentence is converted"]
23
+
24
+ # model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
25
+ # embeddings = model.encode(sentences)
26
+ # print(embeddings)
27
+
28
+ # # Sentences we want sentence embeddings for
29
+ # sentences = ['This is an example sentence', 'Each sentence is converted']
30
+
31
+ # # Load model from HuggingFace Hub
32
+ # tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
33
+ # model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
34
+
35
+ # # Tokenize sentences
36
+ # encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
37
+
38
+ # # Compute token embeddings
39
+ # with torch.no_grad():
40
+ # model_output = model(**encoded_input)
41
+
42
+ # # Perform pooling
43
+ # sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
44
+
45
+ # # Normalize embeddings
46
+ # sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
47
+
48
+ # print("Sentence embeddings:")
49
+ # print(sentence_embeddings)
50
+
51
+
52
+ def greet(name):
53
+ return "Hello " + name + "!!"
54
+
55
+
56
+ # def main():
57
+ # return 0
58
+
59
+ iface = gr.Interface(fn=greet, inputs="text", outputs="text")
60
+ iface.launch()
61
+
62
+ # if __name__ == "__main__":
63
  # main()