File size: 11,370 Bytes
9781b82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import argparse
import io
from time import time
from typing import List, Optional
from abc import ABC, abstractmethod

import uvicorn
from fastapi import Depends, FastAPI, File, HTTPException, Query, Request, UploadFile, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, RedirectResponse, StreamingResponse
from pydantic import BaseModel, Field, field_validator
from pydantic_settings import BaseSettings
from slowapi import Limiter
from slowapi.util import get_remote_address
import requests
from PIL import Image

# Assuming these are in your project structure
from config.tts_config import SPEED, ResponseFormat, config as tts_config
from config.logging_config import logger
from utils.auth import get_api_key

# Configuration settings
class Settings(BaseSettings):
    llm_model_name: str = "google/gemma-3-4b-it"
    max_tokens: int = 512
    host: str = "0.0.0.0"
    port: int = 7860
    chat_rate_limit: str = "100/minute"
    speech_rate_limit: str = "5/minute"
    external_tts_url: str = Field(..., env="EXTERNAL_TTS_URL")
    external_asr_url: str = Field(..., env="EXTERNAL_ASR_URL")
    external_text_gen_url: str = Field(..., env="EXTERNAL_TEXT_GEN_URL")
    external_audio_proc_url: str = Field(..., env="EXTERNAL_AUDIO_PROC_URL")
    api_key_secret: str = Field(..., env="API_KEY_SECRET")

    @field_validator("chat_rate_limit", "speech_rate_limit")
    def validate_rate_limit(cls, v):
        if not v.count("/") == 1 or not v.split("/")[0].isdigit():
            raise ValueError("Rate limit must be in format 'number/period' (e.g., '5/minute')")
        return v

    class Config:
        env_file = ".env"
        env_file_encoding = "utf-8"

settings = Settings()

# FastAPI app setup
app = FastAPI(
    title="Dhwani API",
    description="AI Chat API supporting Indian languages",
    version="1.0.0",
    redirect_slashes=False,
)
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=False,
    allow_methods=["*"],
    allow_headers=["*"],
)

limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter

# Request/Response Models
class SpeechRequest(BaseModel):
    input: str
    voice: str
    model: str
    response_format: ResponseFormat = tts_config.response_format
    speed: float = SPEED

    @field_validator("input")
    def input_must_be_valid(cls, v):
        if len(v) > 1000:
            raise ValueError("Input cannot exceed 1000 characters")
        return v.strip()

    @field_validator("response_format")
    def validate_response_format(cls, v):
        supported_formats = [ResponseFormat.MP3, ResponseFormat.FLAC, ResponseFormat.WAV]
        if v not in supported_formats:
            raise ValueError(f"Response format must be one of {[fmt.value for fmt in supported_formats]}")
        return v

class TranscriptionResponse(BaseModel):
    text: str

class TextGenerationResponse(BaseModel):
    text: str

class AudioProcessingResponse(BaseModel):
    result: str

# TTS Service Interface
class TTSService(ABC):
    @abstractmethod
    async def generate_speech(self, payload: dict) -> requests.Response:
        pass

class ExternalTTSService(TTSService):
    async def generate_speech(self, payload: dict) -> requests.Response:
        try:
            return requests.post(
                settings.external_tts_url,
                json=payload,
                headers={"accept": "application/json", "Content-Type": "application/json"},
                stream=True,
                timeout=10
            )
        except requests.Timeout:
            raise HTTPException(status_code=504, detail="External TTS API timeout")
        except requests.RequestException as e:
            raise HTTPException(status_code=500, detail=f"External TTS API error: {str(e)}")

def get_tts_service() -> TTSService:
    return ExternalTTSService()

# Endpoints
@app.get("/v1/health")
async def health_check():
    return {"status": "healthy", "model": settings.llm_model_name}

@app.get("/")
async def home():
    return RedirectResponse(url="/docs")

@app.post("/v1/audio/speech")
@limiter.limit(settings.speech_rate_limit)
async def generate_audio(
    request: Request,
    speech_request: SpeechRequest = Depends(),
    api_key: str = Depends(get_api_key),
    tts_service: TTSService = Depends(get_tts_service)
):
    if not speech_request.input.strip():
        raise HTTPException(status_code=400, detail="Input cannot be empty")
    
    logger.info("Processing speech request", extra={
        "endpoint": "/v1/audio/speech",
        "input_length": len(speech_request.input),
        "client_ip": get_remote_address(request)
    })
    
    payload = {
        "input": speech_request.input,
        "voice": speech_request.voice,
        "model": speech_request.model,
        "response_format": speech_request.response_format.value,
        "speed": speech_request.speed
    }
    
    response = await tts_service.generate_speech(payload)
    response.raise_for_status()
    
    headers = {
        "Content-Disposition": f"inline; filename=\"speech.{speech_request.response_format.value}\"",
        "Cache-Control": "no-cache",
        "Content-Type": f"audio/{speech_request.response_format.value}"
    }
    
    return StreamingResponse(
        response.iter_content(chunk_size=8192),
        media_type=f"audio/{speech_request.response_format.value}",
        headers=headers
    )

@app.post("/v1/generate_text/", response_model=TextGenerationResponse)
@limiter.limit(settings.chat_rate_limit)
async def generate_text(
    file: UploadFile = File(...),
    language: str = Query(..., enum=["kannada", "hindi", "tamil"]),
    api_key: str = Depends(get_api_key),
    request: Request = None,
):
    logger.info("Processing text generation request", extra={
        "endpoint": "/v1/generate_text",
        "filename": file.filename,
        "client_ip": get_remote_address(request)
    })
    
    start_time = time()
    try:
        file_content = await file.read()
        files = {"file": (file.filename, file_content, file.content_type)}
        
        external_url = f"{settings.external_text_gen_url}/generate_text/?language={language}"
        response = requests.post(
            external_url,
            files=files,
            headers={"accept": "application/json"},
            timeout=10
        )
        response.raise_for_status()
        
        generated_text = response.json().get("text", "")
        logger.info(f"Text generation completed in {time() - start_time:.2f} seconds")
        return TextGenerationResponse(text=generated_text)
    
    except requests.Timeout:
        raise HTTPException(status_code=504, detail="Text generation service timeout")
    except requests.RequestException as e:
        logger.error(f"Text generation request failed: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Text generation failed: {str(e)}")

@app.post("/v1/process_audio/", response_model=AudioProcessingResponse)
@limiter.limit(settings.chat_rate_limit)
async def process_audio(
    file: UploadFile = File(...),
    language: str = Query(..., enum=["kannada", "hindi", "tamil"]),
    api_key: str = Depends(get_api_key),
    request: Request = None,
):
    logger.info("Processing audio processing request", extra={
        "endpoint": "/v1/process_audio",
        "filename": file.filename,
        "client_ip": get_remote_address(request)
    })
    
    start_time = time()
    try:
        file_content = await file.read()
        files = {"file": (file.filename, file_content, file.content_type)}
        
        external_url = f"{settings.external_audio_proc_url}/process_audio/?language={language}"
        response = requests.post(
            external_url,
            files=files,
            headers={"accept": "application/json"},
            timeout=10
        )
        response.raise_for_status()
        
        processed_result = response.json().get("result", "")
        logger.info(f"Audio processing completed in {time() - start_time:.2f} seconds")
        return AudioProcessingResponse(result=processed_result)
    
    except requests.Timeout:
        raise HTTPException(status_code=504, detail="Audio processing service timeout")
    except requests.RequestException as e:
        logger.error(f"Audio processing request failed: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Audio processing failed: {str(e)}")

@app.post("/v1/transcribe/", response_model=TranscriptionResponse)
async def transcribe_audio(
    file: UploadFile = File(...),
    language: str = Query(..., enum=["kannada", "hindi", "tamil"]),
    #api_key: str = Depends(get_api_key),
    request: Request = None,
):
    '''
    logger.info("Processing transcription request", extra={
        "endpoint": "/v1/transcribe",
        "filename": file.filename,
        "client_ip": get_remote_address(request)
    })
    '''
    start_time = time()
    try:
        file_content = await file.read()
        files = {"file": (file.filename, file_content, file.content_type)}
        
        external_url = f"{settings.external_asr_url}/transcribe/?language={language}"
        response = requests.post(
            external_url,
            files=files,
            headers={"accept": "application/json"},
            timeout=10
        )
        response.raise_for_status()
        
        transcription = response.json().get("text", "")
        #logger.info(f"Transcription completed in {time() - start_time:.2f} seconds")
        return TranscriptionResponse(text=transcription)
    
    except requests.Timeout:
        raise HTTPException(status_code=504, detail="Transcription service timeout")
    except requests.RequestException as e:
        #logger.error(f"Transcription request failed: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}")

@app.post("/v1/chat_v2", response_model=TranscriptionResponse)
@limiter.limit(settings.chat_rate_limit)
async def chat_v2(
    request: Request,
    prompt: str = Form(...),
    image: UploadFile = File(default=None),
    api_key: str = Depends(get_api_key)
):
    if not prompt:
        raise HTTPException(status_code=400, detail="Prompt cannot be empty")
    
    logger.info("Processing chat_v2 request", extra={
        "endpoint": "/v1/chat_v2",
        "prompt_length": len(prompt),
        "has_image": bool(image),
        "client_ip": get_remote_address(request)
    })
    
    try:
        # For demonstration, we'll just return the prompt as text
        image_data = Image.open(await image.read()) if image else None
        response_text = f"Processed: {prompt}" + (" with image" if image_data else "")
        return TranscriptionResponse(text=response_text)
    except Exception as e:
        logger.error(f"Chat_v2 processing failed: {str(e)}", exc_info=True)
        raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run the FastAPI server.")
    parser.add_argument("--port", type=int, default=settings.port, help="Port to run the server on.")
    parser.add_argument("--host", type=str, default=settings.host, help="Host to run the server on.")
    args = parser.parse_args()
    uvicorn.run(app, host=args.host, port=args.port)