File size: 5,923 Bytes
f25cff8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import codecs
import os
import re
from pathlib import Path

import numpy as np
import soundfile as sf
import tomli
from cached_path import cached_path
import pandas as pd
from tqdm import tqdm

from f5_tts.infer.utils_infer import (
    infer_process,
    load_model,
    load_vocoder,
    preprocess_ref_audio_text,
    remove_silence_for_generated_wav,
)
from f5_tts.model import DiT, UNetT


def run_batch_inference(prompt_paths, prompt_texts, texts, languages, categories, model_obj, vocoder, mel_spec_type, remove_silence, speed, output_dir):
    count = 0
    for ref_audio in prompt_paths:
        if not isinstance(ref_audio, str) or not os.path.isfile(ref_audio):
            print(f"Invalid ref_audio: {ref_audio}")
            count += 1
            print(count)
            # raise ValueError(f"Invalid ref_audio: {ref_audio}")

    for idx, (ref_audio, ref_text, text_gen, language, category) in tqdm(enumerate(zip(prompt_paths, prompt_texts, texts, languages, categories))):
        voices = {"main": {"ref_audio": ref_audio, "ref_text": ref_text}}
        for voice in voices:
            voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
                voices[voice]["ref_audio"], voices[voice]["ref_text"]
            )
            print("Voice:", voice)
            print("Ref_audio:", voices[voice]["ref_audio"])
            print("Ref_text:", voices[voice]["ref_text"])

        generated_audio_segments = []
        reg1 = r"(?=\[\w+\])"
        chunks = re.split(reg1, text_gen)
        reg2 = r"\[(\w+)\]"
        for text in chunks:
            if not text.strip():
                continue
            match = re.match(reg2, text)
            if match:
                voice = match[1]
            else:
                print("No voice tag found, using main.")
                voice = "main"
            if voice not in voices:
                print(f"Voice {voice} not found, using main.")
                voice = "main"
            text = re.sub(reg2, "", text)
            gen_text = text.strip()
            ref_audio = voices[voice]["ref_audio"]
            ref_text = voices[voice]["ref_text"]
            print(f"Voice: {voice}")
            audio, final_sample_rate, spectragram = infer_process(
                ref_audio, ref_text, gen_text, model_obj, vocoder, mel_spec_type=mel_spec_type, speed=speed
            )
            generated_audio_segments.append(audio)

        if generated_audio_segments:
            final_wave = np.concatenate(generated_audio_segments)
            filename = f"{language.upper()}_{category.upper()}_{idx}.wav"
            outfile_dir = os.path.join(output_dir, language)
            os.makedirs(outfile_dir, exist_ok=True)
            wave_path = Path(outfile_dir) / filename
            with open(wave_path, "wb") as f:
                sf.write(f.name, final_wave, final_sample_rate)
                if remove_silence:
                    remove_silence_for_generated_wav(f.name)
                print(f"Generated audio saved to: {f.name}")


def main():
    parser = argparse.ArgumentParser(
        prog="python3 infer-cli.py",
        description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
        epilog="Specify options above to override one or more settings from config.",
    )

    parser.add_argument(
        "-m",
        "--model",
        help="F5-TTS | E2-TTS",
    )
    parser.add_argument(
        "-p",
        "--ckpt_file",
        help="The Checkpoint .pt",
    )
    parser.add_argument(
        "-v",
        "--vocab_file",
        help="The vocab .txt",
    )

    parser.add_argument(
        "-f",
        "--generate_csv",
        type=str,
    )
    parser.add_argument(
        "-o",
        "--output_dir",
        type=str,
        help="Path to output folder..",
    )
    parser.add_argument(
        "--remove_silence",
        help="Remove silence.",
    )
    parser.add_argument("--vocoder_name", type=str, default="vocos", choices=["vocos", "bigvgan"], help="vocoder name")
    parser.add_argument(
        "--load_vocoder_from_local",
        action="store_true",
        help="load vocoder from local. Default: ../checkpoints/charactr/vocos-mel-24khz",
    )
    parser.add_argument(
        "--speed",
        type=float,
        default=1.0,
        help="Adjust the speed of the audio generation (default: 1.0)",
    )
    args = parser.parse_args()

    # Read texts and prompts to generate
    filepath = args.generate_csv
    df = pd.read_csv(filepath)
    prompt_paths = df['prompt_path'].tolist()
    prompt_texts = df['prompt_text'].tolist()
    texts = df['text'].tolist()
    languages = df['language'].tolist()
    categories = df['category'].tolist()

    # Model config
    model = args.model
    ckpt_file = args.ckpt_file
    vocab_file = args.vocab_file
    remove_silence = args.remove_silence
    speed = args.speed
    vocoder_name = args.vocoder_name
    mel_spec_type = args.vocoder_name
    if vocoder_name == "vocos":
        vocoder_local_path = "../checkpoints/vocos-mel-24khz"
    elif vocoder_name == "bigvgan":
        vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
    vocoder = load_vocoder(vocoder_name=mel_spec_type, is_local=args.load_vocoder_from_local, local_path=vocoder_local_path)

    # load models
    model_cls = DiT
    model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
    print(f"Using {model}...")
    ema_model = load_model(model_cls, model_cfg, ckpt_file, mel_spec_type=mel_spec_type, vocab_file=vocab_file)

    # Batch inference
    output_dir = args.output_dir
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    run_batch_inference(prompt_paths, prompt_texts, texts, languages, categories, ema_model, vocoder, mel_spec_type, remove_silence, speed, output_dir)


if __name__ == "__main__":
    main()