File size: 7,241 Bytes
475b0b9
a506b86
475b0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch
from logging_config import logger
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
from PIL import Image
from fastapi import HTTPException
from io import BytesIO


class LLMManager:
    def __init__(self, model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu"):
        self.model_name = model_name
        self.device = torch.device(device)
        self.torch_dtype = torch.float16 if self.device.type != "cpu" else torch.float32
        self.model = None
        self.is_loaded = False
        self.processor = None

    def unload(self):
        if self.is_loaded:
            # Delete the model and processor to free memory
            del self.model
            del self.processor
            # If using CUDA, clear the cache to free GPU memory
            if self.device.type == "cuda":
                torch.cuda.empty_cache()
            self.is_loaded = False
            logger.info(f"LLM {self.model_name} unloaded from {self.device}")
    def load(self):
        if not self.is_loaded:
            
            #self.model_name = "google/gemma-3-4b-it"

            self.model = Gemma3ForConditionalGeneration.from_pretrained(
                self.model_name, device_map="auto"
                ).eval()

            self.processor = AutoProcessor.from_pretrained(self.model_name)

            self.is_loaded = True
            logger.info(f"LLM {self.model_name} loaded on {self.device}")

    async def generate(self, prompt: str, max_tokens: int = 2048, temperature: float = 0.7) -> str:
        if not self.is_loaded:
            self.load()
        
        messages_vlm = [
            {
                "role": "system",
                "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and karnataka as base state, Provide a concise response in one sentence maximum."}]
            },
            {
                "role": "user",
                "content": []
            }
        ]

        # Add text prompt to user content
        messages_vlm[1]["content"].append({"type": "text", "text": prompt})

                # Process the chat template with the processor
        inputs_vlm = self.processor.apply_chat_template(
            messages_vlm,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt"
        ).to(self.model.device, dtype=torch.bfloat16)

        input_len = inputs_vlm["input_ids"].shape[-1]

        # Generate response
        with torch.inference_mode():
            generation = self.model.generate(**inputs_vlm, max_new_tokens=100, do_sample=False)
            generation = generation[0][input_len:]

        # Decode the output
        response = self.processor.decode(generation, skip_special_tokens=True)
      
        return response
    
    async def vision_query(self, image: Image.Image, query: str) -> str:
        if not self.is_loaded:
            self.load()

        messages_vlm = [
            {
                "role": "system",
                "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Summarise your answer in max 2 lines."}]
            },
            {
                "role": "user",
                "content": []
            }
        ]

        # Add text prompt to user content
        messages_vlm[1]["content"].append({"type": "text", "text": query})

        # Handle image if provided and valid
        if image and image.size[0] > 0 and image.size[1] > 0:  # Check for valid dimensions
            # Image is already a PIL Image, no need to read or reopen
            messages_vlm[1]["content"].insert(0, {"type": "image", "image": image})
            logger.info(f"Received valid image for processing")
        else:
            logger.info("No valid image provided, processing text only")

        # Process the chat template with the processor
        try:
            inputs_vlm = self.processor.apply_chat_template(
                messages_vlm,
                add_generation_prompt=True,
                tokenize=True,
                return_dict=True,
                return_tensors="pt"
            ).to(self.model.device, dtype=torch.bfloat16)
        except Exception as e:
            logger.error(f"Error in apply_chat_template: {str(e)}")
            raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")

        input_len = inputs_vlm["input_ids"].shape[-1]

        # Generate response
        with torch.inference_mode():
            generation = self.model.generate(**inputs_vlm, max_new_tokens=100, do_sample=False)
            generation = generation[0][input_len:]

        # Decode the output
        decoded = self.processor.decode(generation, skip_special_tokens=True)
        logger.info(f"Chat Response: {decoded}")

        return decoded
    
    async def chat_v2(self, image: Image.Image, query: str) -> str:
        if not self.is_loaded:
            self.load()
             # Construct the message structure
        messages_vlm = [
            {
                "role": "system",
                "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and karnataka as base state"}]
            },
            {
                "role": "user",
                "content": []
            }
        ]

        # Add text prompt to user content
        messages_vlm[1]["content"].append({"type": "text", "text": query})

        # Handle image only if provided and valid
        if image and image.file and image.size > 0:  # Check for valid file with content
            # Read the image file
            image_data = await image.read()    
            if not image_data:
                raise HTTPException(status_code=400, detail="Uploaded image is empty")
            # Open image with PIL for processing
            img = Image.open(BytesIO(image_data))
            # Add image to content (assuming processor accepts PIL images)
            messages_vlm[1]["content"].insert(0, {"type": "image", "image": img})
            logger.info(f"Received image: {image.filename}")
        else:
            if image and (not image.file or image.size == 0):
                logger.warning("Received invalid or empty image parameter, treating as text-only")
            logger.info("No valid image provided, processing text only")

        # Process the chat template with the processor
        inputs_vlm = self.processor.apply_chat_template(
            messages_vlm,
            add_generation_prompt=True,
            tokenize=True,
            return_dict=True,
            return_tensors="pt"
        ).to(self.model.device, dtype=torch.bfloat16)

        input_len = inputs_vlm["input_ids"].shape[-1]

        # Generate response
        with torch.inference_mode():
            generation = self.model.generate(**inputs_vlm, max_new_tokens=100, do_sample=False)
            generation = generation[0][input_len:]

        # Decode the output
        decoded = self.processor.decode(generation, skip_special_tokens=True)
        logger.info(f"Chat Response: {decoded}")
        return decoded