File size: 42,248 Bytes
4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de 120ac19 4eda5de b192c58 120ac19 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de b192c58 4eda5de 120ac19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
import argparse
import io
import os
from time import time
from typing import List, Dict
import tempfile
import uvicorn
from fastapi import Depends, FastAPI, File, HTTPException, Query, Request, UploadFile, Body, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, RedirectResponse, StreamingResponse
from PIL import Image
from pydantic import BaseModel, field_validator
from pydantic_settings import BaseSettings
from slowapi import Limiter
from slowapi.util import get_remote_address
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoProcessor, BitsAndBytesConfig, AutoModel, Gemma3ForConditionalGeneration
from IndicTransToolkit import IndicProcessor
import json
import asyncio
from contextlib import asynccontextmanager
import soundfile as sf
import numpy as np
import requests
import logging
from starlette.responses import StreamingResponse
from logging_config import logger # Assumed external logging config
from tts_config import SPEED, ResponseFormat, config as tts_config # Assumed external TTS config
import torchaudio
from tenacity import retry, stop_after_attempt, wait_exponential
from torch.cuda.amp import autocast
# Device setup
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if device != "cpu" else torch.float32
logger.info(f"Using device: {device} with dtype: {torch_dtype}")
# Check CUDA availability and version
cuda_available = torch.cuda.is_available()
cuda_version = torch.version.cuda if cuda_available else None
if cuda_available:
device_idx = torch.cuda.current_device()
capability = torch.cuda.get_device_capability(device_idx)
compute_capability_float = float(f"{capability[0]}.{capability[1]}")
print(f"CUDA version: {cuda_version}")
print(f"CUDA Compute Capability: {compute_capability_float}")
else:
print("CUDA is not available on this system.")
# Settings
class Settings(BaseSettings):
llm_model_name: str = "google/gemma-3-4b-it"
max_tokens: int = 512
host: str = "0.0.0.0"
port: int = 7860
chat_rate_limit: str = "100/minute"
speech_rate_limit: str = "5/minute"
@field_validator("chat_rate_limit", "speech_rate_limit")
def validate_rate_limit(cls, v):
if not v.count("/") == 1 or not v.split("/")[0].isdigit():
raise ValueError("Rate limit must be in format 'number/period' (e.g., '5/minute')")
return v
class Config:
env_file = ".env"
settings = Settings()
# Quantization config for LLM
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
# Request queue for concurrency control
request_queue = asyncio.Queue(maxsize=10)
# Logging optimization
logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
# LLM Manager with batching
class LLMManager:
def __init__(self, model_name: str, device: str = device):
self.model_name = model_name
self.device = torch.device(device)
self.torch_dtype = torch.float16 if self.device.type != "cpu" else torch.float32
self.model = None
self.processor = None
self.is_loaded = False
self.token_cache = {}
self.load()
logger.info(f"LLMManager initialized with model {model_name} on {self.device}")
def load(self):
if not self.is_loaded:
try:
if self.device.type == "cuda":
torch.set_float32_matmul_precision('high')
logger.info("Enabled TF32 matrix multiplication for improved GPU performance")
self.model = Gemma3ForConditionalGeneration.from_pretrained(
self.model_name,
device_map="auto",
quantization_config=quantization_config,
torch_dtype=self.torch_dtype
)
if self.model is None:
raise ValueError(f"Failed to load model {self.model_name}: Model object is None")
self.model.eval()
self.processor = AutoProcessor.from_pretrained(self.model_name, use_fast=True)
dummy_input = self.processor("test", return_tensors="pt").to(self.device)
with torch.no_grad():
self.model.generate(**dummy_input, max_new_tokens=10)
self.is_loaded = True
logger.info(f"LLM {self.model_name} loaded and warmed up on {self.device}")
except Exception as e:
logger.error(f"Failed to load LLM: {str(e)}")
self.is_loaded = False
raise # Re-raise to ensure failure is caught upstream
def unload(self):
if self.is_loaded:
del self.model
del self.processor
if self.device.type == "cuda":
torch.cuda.empty_cache()
logger.info(f"GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated")
self.is_loaded = False
self.token_cache.clear()
logger.info(f"LLM {self.model_name} unloaded")
async def generate(self, prompt: str, max_tokens: int = settings.max_tokens, temperature: float = 0.7) -> str:
if not self.is_loaded:
logger.warning("LLM not loaded; attempting reload")
self.load()
if not self.is_loaded:
raise HTTPException(status_code=503, detail="LLM model unavailable")
cache_key = f"{prompt}:{max_tokens}:{temperature}"
if cache_key in self.token_cache:
logger.info("Using cached response")
return self.token_cache[cache_key]
future = asyncio.Future()
await request_queue.put({"prompt": prompt, "max_tokens": max_tokens, "temperature": temperature, "future": future})
response = await future
self.token_cache[cache_key] = response
logger.info(f"Generated response: {response}")
return response
async def batch_generate(self, prompts: List[Dict]) -> List[str]:
messages_batch = [
[
{"role": "system", "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state. Provide a concise response in one sentence maximum."}]},
{"role": "user", "content": [{"type": "text", "text": prompt["prompt"]}]}
]
for prompt in prompts
]
try:
inputs_vlm = self.processor.apply_chat_template(
messages_batch,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
padding=True
).to(self.device, dtype=torch.bfloat16)
with autocast(), torch.no_grad():
outputs = self.model.generate(
**inputs_vlm,
max_new_tokens=max(prompt["max_tokens"] for prompt in prompts),
do_sample=True,
top_p=0.9,
temperature=max(prompt["temperature"] for prompt in prompts)
)
responses = [
self.processor.decode(output[input_len:], skip_special_tokens=True)
for output, input_len in zip(outputs, inputs_vlm["input_ids"].shape[1])
]
logger.info(f"Batch generated {len(responses)} responses")
return responses
except Exception as e:
logger.error(f"Error in batch generation: {str(e)}")
raise HTTPException(status_code=500, detail=f"Batch generation failed: {str(e)}")
async def vision_query(self, image: Image.Image, query: str) -> str:
if not self.is_loaded:
self.load()
messages_vlm = [
{"role": "system", "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Summarize your answer in maximum 1 sentence."}]},
{"role": "user", "content": [{"type": "text", "text": query}] + ([{"type": "image", "image": image}] if image and image.size[0] > 0 and image.size[1] > 0 else [])}
]
try:
inputs_vlm = self.processor.apply_chat_template(
messages_vlm,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.device, dtype=torch.bfloat16)
except Exception as e:
logger.error(f"Error in apply_chat_template: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
input_len = inputs_vlm["input_ids"].shape[-1]
with torch.inference_mode():
generation = self.model.generate(**inputs_vlm, max_new_tokens=512, do_sample=True, temperature=0.7)
generation = generation[0][input_len:]
decoded = self.processor.decode(generation, skip_special_tokens=True)
logger.info(f"Vision query response: {decoded}")
return decoded
async def chat_v2(self, image: Image.Image, query: str) -> str:
if not self.is_loaded:
self.load()
messages_vlm = [
{"role": "system", "content": [{"type": "text", "text": "You are Dhwani, a helpful assistant. Answer questions considering India as base country and Karnataka as base state."}]},
{"role": "user", "content": [{"type": "text", "text": query}] + ([{"type": "image", "image": image}] if image and image.size[0] > 0 and image.size[1] > 0 else [])}
]
try:
inputs_vlm = self.processor.apply_chat_template(
messages_vlm,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(self.device, dtype=torch.bfloat16)
except Exception as e:
logger.error(f"Error in apply_chat_template: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to process input: {str(e)}")
input_len = inputs_vlm["input_ids"].shape[-1]
with torch.inference_mode():
generation = self.model.generate(**inputs_vlm, max_new_tokens=512, do_sample=True, temperature=0.7)
generation = generation[0][input_len:]
decoded = self.processor.decode(generation, skip_special_tokens=True)
logger.info(f"Chat_v2 response: {decoded}")
return decoded
# TTS Manager
class TTSManager:
def __init__(self, device_type=device):
self.device_type = torch.device(device_type)
self.model = None
self.repo_id = "ai4bharat/IndicF5"
self.load()
def load(self):
if not self.model:
logger.info(f"Loading TTS model {self.repo_id} on {self.device_type}...")
self.model = AutoModel.from_pretrained(self.repo_id, trust_remote_code=True).to(self.device_type)
logger.info("TTS model loaded")
def unload(self):
if self.model:
del self.model
if self.device_type.type == "cuda":
torch.cuda.empty_cache()
logger.info(f"TTS GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated")
self.model = None
logger.info("TTS model unloaded")
def synthesize(self, text, ref_audio_path, ref_text):
if not self.model:
raise ValueError("TTS model not loaded")
with autocast():
return self.model(text, ref_audio_path=ref_audio_path, ref_text=ref_text)
# Translation Manager
class TranslateManager:
def __init__(self, src_lang, tgt_lang, device_type=device, use_distilled=True):
self.device_type = torch.device(device_type)
self.tokenizer = None
self.model = None
self.src_lang = src_lang
self.tgt_lang = tgt_lang
self.use_distilled = use_distilled
self.load()
def load(self):
if not self.tokenizer or not self.model:
if self.src_lang.startswith("eng") and not self.tgt_lang.startswith("eng"):
model_name = "ai4bharat/indictrans2-en-indic-dist-200M" if self.use_distilled else "ai4bharat/indictrans2-en-indic-1B"
elif not self.src_lang.startswith("eng") and self.tgt_lang.startswith("eng"):
model_name = "ai4bharat/indictrans2-indic-en-dist-200M" if self.use_distilled else "ai4bharat/indictrans2-indic-en-1B"
elif not self.src_lang.startswith("eng") and not self.tgt_lang.startswith("eng"):
model_name = "ai4bharat/indictrans2-indic-indic-dist-320M" if self.use_distilled else "ai4bharat/indictrans2-indic-indic-1B"
else:
raise ValueError("Invalid language combination")
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
self.model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2"
).to(self.device_type)
self.model = torch.compile(self.model, mode="reduce-overhead")
logger.info(f"Translation model {model_name} loaded")
# Model Manager
class ModelManager:
def __init__(self, device_type=device, use_distilled=True, is_lazy_loading=False):
self.models = {}
self.device_type = device_type
self.use_distilled = use_distilled
self.is_lazy_loading = is_lazy_loading
def load_model(self, src_lang, tgt_lang, key):
logger.info(f"Loading translation model for {src_lang} -> {tgt_lang}")
translate_manager = TranslateManager(src_lang, tgt_lang, self.device_type, self.use_distilled)
self.models[key] = translate_manager
logger.info(f"Loaded translation model for {key}")
def get_model(self, src_lang, tgt_lang):
key = self._get_model_key(src_lang, tgt_lang)
if key not in self.models and self.is_lazy_loading:
self.load_model(src_lang, tgt_lang, key)
return self.models.get(key) or (self.load_model(src_lang, tgt_lang, key) or self.models[key])
def _get_model_key(self, src_lang, tgt_lang):
if src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
return 'eng_indic'
elif not src_lang.startswith("eng") and tgt_lang.startswith("eng"):
return 'indic_eng'
elif not src_lang.startswith("eng") and not tgt_lang.startswith("eng"):
return 'indic_indic'
raise ValueError("Invalid language combination")
# ASR Manager
class ASRModelManager:
def __init__(self, device_type=device):
self.device_type = torch.device(device_type)
self.model = None
self.model_language = {"kannada": "kn"}
self.load()
def load(self):
if not self.model:
logger.info(f"Loading ASR model on {self.device_type}...")
self.model = AutoModel.from_pretrained(
"ai4bharat/indic-conformer-600m-multilingual",
trust_remote_code=True
).to(self.device_type)
logger.info("ASR model loaded")
def unload(self):
if self.model:
del self.model
if self.device_type.type == "cuda":
torch.cuda.empty_cache()
logger.info(f"ASR GPU memory cleared: {torch.cuda.memory_allocated()} bytes allocated")
self.model = None
logger.info("ASR model unloaded")
# Global Managers
llm_manager = LLMManager(settings.llm_model_name)
model_manager = ModelManager()
asr_manager = ASRModelManager()
tts_manager = TTSManager()
ip = IndicProcessor(inference=True)
# TTS Constants
EXAMPLES = [
{
"audio_name": "KAN_F (Happy)",
"audio_url": "https://github.com/AI4Bharat/IndicF5/raw/refs/heads/main/prompts/KAN_F_HAPPY_00001.wav",
"ref_text": "ನಮ್ ಫ್ರಿಜ್ಜಲ್ಲಿ ಕೂಲಿಂಗ್ ಸಮಸ್ಯೆ ಆಗಿ ನಾನ್ ಭಾಳ ದಿನದಿಂದ ಒದ್ದಾಡ್ತಿದ್ದೆ, ಆದ್ರೆ ಅದ್ನೀಗ ಮೆಕಾನಿಕ್ ಆಗಿರೋ ನಿಮ್ ಸಹಾಯ್ದಿಂದ ಬಗೆಹರಿಸ್ಕೋಬೋದು ಅಂತಾಗಿ ನಿರಾಳ ಆಯ್ತು ನಂಗೆ।",
"synth_text": "ಚೆನ್ನೈನ ಶೇರ್ ಆಟೋ ಪ್ರಯಾಣಿಕರ ನಡುವೆ ಆಹಾರವನ್ನು ಹಂಚಿಕೊಂಡು ತಿನ್ನುವುದು ನನಗೆ ಮನಸ್ಸಿಗೆ ತುಂಬಾ ಒಳ್ಳೆಯದೆನಿಸುವ ವಿಷಯ."
},
]
# Pydantic Models
class SynthesizeRequest(BaseModel):
text: str
ref_audio_name: str
ref_text: str = None
class KannadaSynthesizeRequest(BaseModel):
text: str
@field_validator("text")
def text_must_be_valid(cls, v):
if len(v) > 500:
raise ValueError("Text cannot exceed 500 characters")
return v.strip()
class ChatRequest(BaseModel):
prompt: str
src_lang: str = "kan_Knda"
tgt_lang: str = "kan_Knda"
@field_validator("prompt")
def prompt_must_be_valid(cls, v):
if len(v) > 1000:
raise ValueError("Prompt cannot exceed 1000 characters")
return v.strip()
@field_validator("src_lang", "tgt_lang")
def validate_language(cls, v):
if v not in SUPPORTED_LANGUAGES:
raise ValueError(f"Unsupported language code: {v}. Supported codes: {', '.join(SUPPORTED_LANGUAGES)}")
return v
class ChatResponse(BaseModel):
response: str
class TranslationRequest(BaseModel):
sentences: List[str]
src_lang: str
tgt_lang: str
class TranscriptionResponse(BaseModel):
text: str
class TranslationResponse(BaseModel):
translations: List[str]
# TTS Functions
@retry(stop=stop_after_attempt(3), wait=wait_exponential(min=1, max=10))
def load_audio_from_url(url: str):
response = requests.get(url)
if response.status_code == 200:
audio_data, sample_rate = sf.read(io.BytesIO(response.content))
return sample_rate, audio_data
raise HTTPException(status_code=500, detail="Failed to load reference audio from URL after retries")
async def synthesize_speech(tts_manager: TTSManager, text: str, ref_audio_name: str, ref_text: str) -> io.BytesIO:
async with request_queue:
ref_audio_url = next((ex["audio_url"] for ex in EXAMPLES if ex["audio_name"] == ref_audio_name), None)
if not ref_audio_url:
raise HTTPException(status_code=400, detail="Invalid reference audio name.")
if not text.strip() or not ref_text.strip():
raise HTTPException(status_code=400, detail="Text or reference text cannot be empty.")
logger.info(f"Synthesizing speech for text: {text[:50]}... with ref_audio: {ref_audio_name}")
loop = asyncio.get_running_loop()
sample_rate, audio_data = await loop.run_in_executor(None, load_audio_from_url, ref_audio_url)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_audio:
await loop.run_in_executor(None, sf.write, temp_audio.name, audio_data, sample_rate, "WAV")
temp_audio.flush()
audio = tts_manager.synthesize(text, temp_audio.name, ref_text)
buffer = io.BytesIO()
await loop.run_in_executor(None, sf.write, buffer, audio.astype(np.float32) / 32768.0 if audio.dtype == np.int16 else audio, 24000, "WAV")
buffer.seek(0)
logger.info("Speech synthesis completed")
return buffer
# Supported Languages
SUPPORTED_LANGUAGES = {
"asm_Beng", "kas_Arab", "pan_Guru", "ben_Beng", "kas_Deva", "san_Deva",
"brx_Deva", "mai_Deva", "sat_Olck", "doi_Deva", "mal_Mlym", "snd_Arab",
"eng_Latn", "mar_Deva", "snd_Deva", "gom_Deva", "mni_Beng", "tam_Taml",
"guj_Gujr", "mni_Mtei", "tel_Telu", "hin_Deva", "npi_Deva", "urd_Arab",
"kan_Knda", "ory_Orya",
"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn",
"por_Latn", "rus_Cyrl", "pol_Latn"
}
# Dependency
def get_translate_manager(src_lang: str, tgt_lang: str) -> TranslateManager:
return model_manager.get_model(src_lang, tgt_lang)
# Translation Function
async def perform_internal_translation(sentences: List[str], src_lang: str, tgt_lang: str) -> List[str]:
try:
translate_manager = model_manager.get_model(src_lang, tgt_lang)
except ValueError as e:
logger.info(f"Model not preloaded: {str(e)}, loading now...")
key = model_manager._get_model_key(src_lang, tgt_lang)
model_manager.load_model(src_lang, tgt_lang, key)
translate_manager = model_manager.get_model(src_lang, tgt_lang)
batch = ip.preprocess_batch(sentences, src_lang=src_lang, tgt_lang=tgt_lang)
inputs = translate_manager.tokenizer(batch, truncation=True, padding="longest", return_tensors="pt", return_attention_mask=True).to(translate_manager.device_type)
with torch.no_grad(), autocast():
generated_tokens = translate_manager.model.generate(**inputs, use_cache=True, min_length=0, max_length=256, num_beams=5, num_return_sequences=1)
with translate_manager.tokenizer.as_target_tokenizer():
generated_tokens = translate_manager.tokenizer.batch_decode(generated_tokens.detach().cpu().tolist(), skip_special_tokens=True, clean_up_tokenization_spaces=True)
return ip.postprocess_batch(generated_tokens, lang=tgt_lang)
# Lifespan Event Handler
translation_configs = []
@asynccontextmanager
async def lifespan(app: FastAPI):
def load_all_models():
logger.info("Loading LLM model...")
llm_manager.load()
logger.info("Loading TTS model...")
tts_manager.load()
logger.info("Loading ASR model...")
asr_manager.load()
translation_tasks = [
('eng_Latn', 'kan_Knda', 'eng_indic'),
('kan_Knda', 'eng_Latn', 'indic_eng'),
('kan_Knda', 'hin_Deva', 'indic_indic'),
]
for config in translation_configs:
src_lang = config["src_lang"]
tgt_lang = config["tgt_lang"]
key = model_manager._get_model_key(src_lang, tgt_lang)
translation_tasks.append((src_lang, tgt_lang, key))
for src_lang, tgt_lang, key in translation_tasks:
logger.info(f"Loading translation model for {src_lang} -> {tgt_lang}...")
model_manager.load_model(src_lang, tgt_lang, key)
logger.info("All models loaded successfully")
logger.info("Starting server with preloaded models...")
load_all_models()
batch_task = asyncio.create_task(batch_worker())
yield
batch_task.cancel()
llm_manager.unload()
tts_manager.unload()
asr_manager.unload()
for model in model_manager.models.values():
model.unload()
logger.info("Server shutdown complete; all models unloaded")
# Batch Worker
async def batch_worker():
while True:
batch = []
last_request_time = time()
try:
while len(batch) < 4:
try:
request = await asyncio.wait_for(request_queue.get(), timeout=1.0)
batch.append(request)
current_time = time()
if current_time - last_request_time > 1.0 and batch:
break
last_request_time = current_time
except asyncio.TimeoutError:
if batch:
break
continue
if batch:
start_time = time()
responses = await llm_manager.batch_generate(batch)
duration = time() - start_time
logger.info(f"Batch of {len(batch)} requests processed in {duration:.3f} seconds")
for request, response in zip(batch, responses):
request["future"].set_result(response)
except Exception as e:
logger.error(f"Batch worker error: {str(e)}")
for request in batch:
request["future"].set_exception(e)
# FastAPI App
app = FastAPI(
title="Optimized Dhwani API",
description="AI Chat API supporting Indian languages with performance enhancements",
version="1.0.0",
redirect_slashes=False,
lifespan=lifespan
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=False,
allow_methods=["*"],
allow_headers=["*"],
)
@app.middleware("http")
async def add_request_timing(request: Request, call_next):
start_time = time()
response = await call_next(request)
duration = time() - start_time
logger.info(f"Request to {request.url.path} took {duration:.3f} seconds")
response.headers["X-Response-Time"] = f"{duration:.3f}"
return response
limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter
# Endpoints
@app.post("/audio/speech", response_class=StreamingResponse)
async def synthesize_kannada(request: KannadaSynthesizeRequest):
if not tts_manager.model:
raise HTTPException(status_code=503, detail="TTS model not loaded")
kannada_example = next(ex for ex in EXAMPLES if ex["audio_name"] == "KAN_F (Happy)")
if not request.text.strip():
raise HTTPException(status_code=400, detail="Text to synthesize cannot be empty.")
audio_buffer = await synthesize_speech(tts_manager, request.text, "KAN_F (Happy)", kannada_example["ref_text"])
return StreamingResponse(
audio_buffer,
media_type="audio/wav",
headers={"Content-Disposition": "attachment; filename=synthesized_kannada_speech.wav"}
)
@app.post("/translate", response_model=TranslationResponse)
async def translate(request: TranslationRequest, translate_manager: TranslateManager = Depends(get_translate_manager)):
if not request.sentences:
raise HTTPException(status_code=400, detail="Input sentences are required")
batch = ip.preprocess_batch(request.sentences, src_lang=request.src_lang, tgt_lang=request.tgt_lang)
inputs = translate_manager.tokenizer(batch, truncation=True, padding="longest", return_tensors="pt", return_attention_mask=True).to(translate_manager.device_type)
with torch.no_grad(), autocast():
generated_tokens = translate_manager.model.generate(**inputs, use_cache=True, min_length=0, max_length=256, num_beams=5, num_return_sequences=1)
with translate_manager.tokenizer.as_target_tokenizer():
generated_tokens = translate_manager.tokenizer.batch_decode(generated_tokens.detach().cpu().tolist(), skip_special_tokens=True, clean_up_tokenization_spaces=True)
translations = ip.postprocess_batch(generated_tokens, lang=request.tgt_lang)
return TranslationResponse(translations=translations)
@app.get("/v1/health")
async def health_check():
memory_usage = torch.cuda.memory_allocated() / (24 * 1024**3) if cuda_available else 0
if memory_usage > 0.9:
logger.warning("GPU memory usage exceeds 90%; consider unloading models")
llm_status = "unhealthy"
llm_latency = None
if llm_manager.is_loaded:
start = time()
try:
llm_test = await llm_manager.generate("What is the capital of Karnataka?", max_tokens=10)
llm_latency = time() - start
llm_status = "healthy" if llm_test else "unhealthy"
except Exception as e:
logger.error(f"LLM health check failed: {str(e)}")
tts_status = "unhealthy"
tts_latency = None
if tts_manager.model:
start = time()
try:
audio_buffer = await synthesize_speech(tts_manager, "Test", "KAN_F (Happy)", EXAMPLES[0]["ref_text"])
tts_latency = time() - start
tts_status = "healthy" if audio_buffer else "unhealthy"
except Exception as e:
logger.error(f"TTS health check failed: {str(e)}")
asr_status = "unhealthy"
asr_latency = None
if asr_manager.model:
start = time()
try:
dummy_audio = np.zeros(16000, dtype=np.float32)
wav = torch.tensor(dummy_audio).unsqueeze(0).to(device)
with autocast(), torch.no_grad():
asr_test = asr_manager.model(wav, asr_manager.model_language["kannada"], "rnnt")
asr_latency = time() - start
asr_status = "healthy" if asr_test else "unhealthy"
except Exception as e:
logger.error(f"ASR health check failed: {str(e)}")
status = {
"status": "healthy" if llm_status == "healthy" and tts_status == "healthy" and asr_status == "healthy" else "degraded",
"model": settings.llm_model_name,
"llm_status": llm_status,
"llm_latency": f"{llm_latency:.3f}s" if llm_latency else "N/A",
"tts_status": tts_status,
"tts_latency": f"{tts_latency:.3f}s" if tts_latency else "N/A",
"asr_status": asr_status,
"asr_latency": f"{asr_latency:.3f}s" if asr_latency else "N/A",
"translation_models": list(model_manager.models.keys()),
"gpu_memory_usage": f"{memory_usage:.2%}"
}
logger.info("Health check completed")
return status
@app.get("/")
async def home():
return RedirectResponse(url="/docs")
@app.post("/v1/unload_all_models")
async def unload_all_models():
try:
logger.info("Starting to unload all models...")
llm_manager.unload()
tts_manager.unload()
asr_manager.unload()
for model in model_manager.models.values():
model.unload()
logger.info("All models unloaded successfully")
return {"status": "success", "message": "All models unloaded"}
except Exception as e:
logger.error(f"Error unloading models: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to unload models: {str(e)}")
@app.post("/v1/load_all_models")
async def load_all_models():
try:
logger.info("Starting to load all models...")
llm_manager.load()
tts_manager.load()
asr_manager.load()
for src_lang, tgt_lang, key in [
('eng_Latn', 'kan_Knda', 'eng_indic'),
('kan_Knda', 'eng_Latn', 'indic_eng'),
('kan_Knda', 'hin_Deva', 'indic_indic'),
]:
if key not in model_manager.models:
model_manager.load_model(src_lang, tgt_lang, key)
logger.info("All models loaded successfully")
return {"status": "success", "message": "All models loaded"}
except Exception as e:
logger.error(f"Error loading models: {str(e)}")
raise HTTPException(status_code=500, detail=f"Failed to load models: {str(e)}")
@app.post("/v1/translate", response_model=TranslationResponse)
async def translate_endpoint(request: TranslationRequest):
logger.info(f"Received translation request: {request.dict()}")
try:
translations = await perform_internal_translation(request.sentences, request.src_lang, request.tgt_lang)
logger.info(f"Translation successful: {translations}")
return TranslationResponse(translations=translations)
except Exception as e:
logger.error(f"Unexpected error during translation: {str(e)}")
raise HTTPException(status_code=500, detail=f"Translation failed: {str(e)}")
@app.post("/v1/chat", response_model=ChatResponse)
@limiter.limit(settings.chat_rate_limit)
async def chat(request: Request, chat_request: ChatRequest):
async with request_queue:
if not chat_request.prompt:
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
logger.info(f"Received prompt: {chat_request.prompt}, src_lang: {chat_request.src_lang}, tgt_lang: {chat_request.tgt_lang}")
EUROPEAN_LANGUAGES = {"deu_Latn", "fra_Latn", "nld_Latn", "spa_Latn", "ita_Latn", "por_Latn", "rus_Cyrl", "pol_Latn"}
try:
if chat_request.src_lang != "eng_Latn" and chat_request.src_lang not in EUROPEAN_LANGUAGES:
translated_prompt = await perform_internal_translation([chat_request.prompt], chat_request.src_lang, "eng_Latn")
prompt_to_process = translated_prompt[0]
logger.info(f"Translated prompt to English: {prompt_to_process}")
else:
prompt_to_process = chat_request.prompt
logger.info("Prompt in English or European language, no translation needed")
response = await llm_manager.generate(prompt_to_process, settings.max_tokens)
logger.info(f"Generated English response: {response}")
if chat_request.tgt_lang != "eng_Latn" and chat_request.tgt_lang not in EUROPEAN_LANGUAGES:
translated_response = await perform_internal_translation([response], "eng_Latn", chat_request.tgt_lang)
final_response = translated_response[0]
logger.info(f"Translated response to {chat_request.tgt_lang}: {final_response}")
else:
final_response = response
logger.info(f"Response in {chat_request.tgt_lang}, no translation needed")
return ChatResponse(response=final_response)
except Exception as e:
logger.error(f"Error processing request: {str(e)}")
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
@app.post("/v1/visual_query/")
async def visual_query(
file: UploadFile = File(...),
query: str = Body(...),
src_lang: str = Query("kan_Knda", enum=list(SUPPORTED_LANGUAGES)),
tgt_lang: str = Query("kan_Knda", enum=list(SUPPORTED_LANGUAGES)),
):
async with request_queue:
try:
image = Image.open(file.file)
if image.size == (0, 0):
raise HTTPException(status_code=400, detail="Uploaded image is empty or invalid")
if src_lang != "eng_Latn":
translated_query = await perform_internal_translation([query], src_lang, "eng_Latn")
query_to_process = translated_query[0]
logger.info(f"Translated query to English: {query_to_process}")
else:
query_to_process = query
logger.info("Query already in English, no translation needed")
answer = await llm_manager.vision_query(image, query_to_process)
logger.info(f"Generated English answer: {answer}")
if tgt_lang != "eng_Latn":
translated_answer = await perform_internal_translation([answer], "eng_Latn", tgt_lang)
final_answer = translated_answer[0]
logger.info(f"Translated answer to {tgt_lang}: {final_answer}")
else:
final_answer = answer
logger.info("Answer kept in English, no translation needed")
return {"answer": final_answer}
except Exception as e:
logger.error(f"Error processing request: {str(e)}")
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
@app.post("/v1/chat_v2", response_model=ChatResponse)
@limiter.limit(settings.chat_rate_limit)
async def chat_v2(
request: Request,
prompt: str = Form(...),
image: UploadFile = File(default=None),
src_lang: str = Form("kan_Knda"),
tgt_lang: str = Form("kan_Knda"),
):
async with request_queue:
if not prompt:
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
if src_lang not in SUPPORTED_LANGUAGES or tgt_lang not in SUPPORTED_LANGUAGES:
raise HTTPException(status_code=400, detail=f"Unsupported language code. Supported codes: {', '.join(SUPPORTED_LANGUAGES)}")
logger.info(f"Received prompt: {prompt}, src_lang: {src_lang}, tgt_lang: {tgt_lang}, Image provided: {image is not None}")
try:
if image:
image_data = await image.read()
if not image_data:
raise HTTPException(status_code=400, detail="Uploaded image is empty")
img = Image.open(io.BytesIO(image_data))
if src_lang != "eng_Latn":
translated_prompt = await perform_internal_translation([prompt], src_lang, "eng_Latn")
prompt_to_process = translated_prompt[0]
logger.info(f"Translated prompt to English: {prompt_to_process}")
else:
prompt_to_process = prompt
decoded = await llm_manager.chat_v2(img, prompt_to_process)
logger.info(f"Generated English response: {decoded}")
if tgt_lang != "eng_Latn":
translated_response = await perform_internal_translation([decoded], "eng_Latn", tgt_lang)
final_response = translated_response[0]
logger.info(f"Translated response to {tgt_lang}: {final_response}")
else:
final_response = decoded
else:
if src_lang != "eng_Latn":
translated_prompt = await perform_internal_translation([prompt], src_lang, "eng_Latn")
prompt_to_process = translated_prompt[0]
logger.info(f"Translated prompt to English: {prompt_to_process}")
else:
prompt_to_process = prompt
decoded = await llm_manager.generate(prompt_to_process, settings.max_tokens)
logger.info(f"Generated English response: {decoded}")
if tgt_lang != "eng_Latn":
translated_response = await perform_internal_translation([decoded], "eng_Latn", tgt_lang)
final_response = translated_response[0]
logger.info(f"Translated response to {tgt_lang}: {final_response}")
else:
final_response = decoded
return ChatResponse(response=final_response)
except Exception as e:
logger.error(f"Error processing request: {str(e)}")
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
@app.post("/transcribe/", response_model=TranscriptionResponse)
async def transcribe_audio(file: UploadFile = File(...), language: str = Query(..., enum=list(asr_manager.model_language.keys()))):
async with request_queue:
if not asr_manager.model:
raise HTTPException(status_code=503, detail="ASR model not loaded")
try:
wav, sr = torchaudio.load(file.file, backend="cuda" if cuda_available else "cpu")
wav = torch.mean(wav, dim=0, keepdim=True).to(device)
target_sample_rate = 16000
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=target_sample_rate).to(device)
wav = resampler(wav)
with autocast(), torch.no_grad():
transcription_rnnt = asr_manager.model(wav, asr_manager.model_language[language], "rnnt")
return TranscriptionResponse(text=transcription_rnnt)
except Exception as e:
logger.error(f"Error in transcription: {str(e)}")
raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}")
@app.post("/v1/speech_to_speech")
async def speech_to_speech(
request: Request,
file: UploadFile = File(...),
language: str = Query(..., enum=list(asr_manager.model_language.keys())),
) -> StreamingResponse:
async with request_queue:
if not tts_manager.model:
raise HTTPException(status_code=503, detail="TTS model not loaded")
transcription = await transcribe_audio(file, language)
logger.info(f"Transcribed text: {transcription.text}")
chat_request = ChatRequest(prompt=transcription.text, src_lang=LANGUAGE_TO_SCRIPT.get(language, "kan_Knda"), tgt_lang=LANGUAGE_TO_SCRIPT.get(language, "kan_Knda"))
processed_text = await chat(request, chat_request)
logger.info(f"Processed text: {processed_text.response}")
voice_request = KannadaSynthesizeRequest(text=processed_text.response)
audio_response = await synthesize_kannada(voice_request)
return audio_response
LANGUAGE_TO_SCRIPT = {"kannada": "kan_Knda"}
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the FastAPI server.")
parser.add_argument("--port", type=int, default=settings.port, help="Port to run the server on.")
parser.add_argument("--host", type=str, default=settings.host, help="Host to run the server on.")
parser.add_argument("--config", type=str, default="config_one", help="Configuration to use")
args = parser.parse_args()
def load_config(config_path="dhwani_config.json"):
with open(config_path, "r") as f:
return json.load(f)
config_data = load_config()
if args.config not in config_data["configs"]:
raise ValueError(f"Invalid config: {args.config}. Available: {list(config_data['configs'].keys())}")
selected_config = config_data["configs"][args.config]
global_settings = config_data["global_settings"]
settings.llm_model_name = selected_config["components"]["LLM"]["model"]
settings.max_tokens = selected_config["components"]["LLM"]["max_tokens"]
settings.host = global_settings["host"]
settings.port = global_settings["port"]
settings.chat_rate_limit = global_settings["chat_rate_limit"]
settings.speech_rate_limit = global_settings["speech_rate_limit"]
llm_manager = LLMManager(settings.llm_model_name)
if selected_config["components"]["ASR"]:
asr_manager.model_language[selected_config["language"]] = selected_config["components"]["ASR"]["language_code"]
if selected_config["components"]["Translation"]:
translation_configs.extend(selected_config["components"]["Translation"])
host = args.host if args.host != settings.host else settings.host
port = args.port if args.port != settings.port else settings.port
# Run Uvicorn with import string to support workers
uvicorn.run("main:app", host=host, port=port, workers=2) |