File size: 12,074 Bytes
6a2d9d9
 
 
cd681db
6a2d9d9
 
 
 
 
 
 
 
 
 
 
 
 
4e05c0a
 
6a2d9d9
 
 
 
 
cd681db
 
6a2d9d9
 
 
 
cd681db
6a2d9d9
 
cd681db
 
 
 
 
6a2d9d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd681db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a2d9d9
cd681db
 
 
 
 
 
 
 
6a2d9d9
 
 
cd681db
 
6a2d9d9
 
 
 
 
 
cd681db
4e05c0a
6a2d9d9
 
 
 
 
 
 
 
 
 
cd681db
 
4e05c0a
62cf342
 
6a2d9d9
 
cd681db
6a2d9d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd681db
6a2d9d9
 
 
 
 
 
 
 
 
cd681db
 
 
6a2d9d9
4e05c0a
 
cd681db
4e05c0a
 
 
 
6a2d9d9
4e05c0a
6a2d9d9
 
4e05c0a
cd681db
6a2d9d9
 
 
 
cd681db
 
4e05c0a
cd681db
6a2d9d9
 
 
 
 
 
 
 
 
 
 
 
 
 
4e05c0a
6a2d9d9
 
 
 
 
 
 
 
 
 
 
 
 
cd681db
6a2d9d9
 
 
 
 
 
 
4e05c0a
 
cd681db
 
 
4e05c0a
 
 
cd681db
4e05c0a
 
 
 
 
 
 
cd681db
4e05c0a
cd681db
 
 
 
 
4e05c0a
cd681db
 
 
 
 
6a2d9d9
 
 
 
 
 
 
 
 
 
 
 
 
 
cd681db
6a2d9d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import torch
import nemo.collections.asr as nemo_asr
from fastapi import FastAPI, File, UploadFile, HTTPException, Query
from fastapi.responses import RedirectResponse, JSONResponse
from pydantic import BaseModel
from pydub import AudioSegment
import os
import tempfile
import subprocess
import asyncio
import io
import logging
from logging.handlers import RotatingFileHandler
from time import time
from typing import List
import argparse
import uvicorn
import shutil

# Configure logging with log rotation
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        RotatingFileHandler("transcription_api.log", maxBytes=10*1024*1024, backupCount=5),
        logging.StreamHandler()
    ]
)

class ASRModelManager:
    def __init__(self, languages_to_load=["kn", "hi", "ta", "te", "ml"], device_type="cuda"):
        self.device_type = device_type
        self.model_language = {
            "kannada": "kn", "hindi": "hi", "malayalam": "ml", "assamese": "as", "bengali": "bn",
            "bodo": "brx", "dogri": "doi", "gujarati": "gu", "kashmiri": "ks", "konkani": "kok",
            "maithili": "mai", "manipuri": "mni", "marathi": "mr", "nepali": "ne", "odia": "or",
            "punjabi": "pa", "sanskrit": "sa", "santali": "sat", "sindhi": "sd", "tamil": "ta",
            "telugu": "te", "urdu": "ur"
        }
        self.config_models = {
            "as": "ai4bharat/indicconformer_stt_as_hybrid_rnnt_large",
            "bn": "ai4bharat/indicconformer_stt_bn_hybrid_rnnt_large",
            "brx": "ai4bharat/indicconformer_stt_brx_hybrid_rnnt_large",
            "doi": "ai4bharat/indicconformer_stt_doi_hybrid_rnnt_large",
            "gu": "ai4bharat/indicconformer_stt_gu_hybrid_rnnt_large",
            "hi": "ai4bharat/indicconformer_stt_hi_hybrid_rnnt_large",
            "kn": "ai4bharat/indicconformer_stt_kn_hybrid_rnnt_large",
            "ks": "ai4bharat/indicconformer_stt_ks_hybrid_rnnt_large",
            "kok": "ai4bharat/indicconformer_stt_kok_hybrid_rnnt_large",
            "mai": "ai4bharat/indicconformer_stt_mai_hybrid_rnnt_large",
            "ml": "ai4bharat/indicconformer_stt_ml_hybrid_rnnt_large",
            "mni": "ai4bharat/indicconformer_stt_mni_hybrid_rnnt_large",
            "mr": "ai4bharat/indicconformer_stt_mr_hybrid_rnnt_large",
            "ne": "ai4bharat/indicconformer_stt_ne_hybrid_rnnt_large",
            "or": "ai4bharat/indicconformer_stt_or_hybrid_rnnt_large",
            "pa": "ai4bharat/indicconformer_stt_pa_hybrid_rnnt_large",
            "sa": "ai4bharat/indicconformer_stt_sa_hybrid_rnnt_large",
            "sat": "ai4bharat/indicconformer_stt_sat_hybrid_rnnt_large",
            "sd": "ai4bharat/indicconformer_stt_sd_hybrid_rnnt_large",
            "ta": "ai4bharat/indicconformer_stt_ta_hybrid_rnnt_large",
            "te": "ai4bharat/indicconformer_stt_te_hybrid_rnnt_large",
            "ur": "ai4bharat/indicconformer_stt_ur_hybrid_rnnt_large"
        }
        # Load models for specified languages on startup
        self.models = {}
        self.load_initial_models(languages_to_load)

    def load_initial_models(self, languages):
        device = torch.device(self.device_type if torch.cuda.is_available() and self.device_type == "cuda" else "cpu")
        logging.info(f"Loading models on device: {device}")
        for lang_id in languages:
            if lang_id not in self.config_models:
                logging.warning(f"No model available for language ID: {lang_id}. Skipping.")
                continue
            try:
                model_name = self.config_models[lang_id]
                logging.info(f"Loading model for {lang_id}: {model_name}")
                model = nemo_asr.models.ASRModel.from_pretrained(model_name)
                model.freeze()  # Set to inference mode
                model = model.to(device)
                self.models[lang_id] = model
                logging.info(f"Successfully loaded model for {lang_id}")
            except Exception as e:
                logging.error(f"Failed to load model for {lang_id}: {str(e)}")

    def get_model(self, language_id):
        if language_id not in self.models:
            logging.warning(f"Model for {language_id} not pre-loaded. Loading now...")
            model = self.load_model(language_id)
            self.models[language_id] = model
        return self.models[language_id]

    def load_model(self, language_id):
        model_name = self.config_models.get(language_id, self.config_models["kn"])
        model = nemo_asr.models.ASRModel.from_pretrained(model_name)
        device = torch.device(self.device_type if torch.cuda.is_available() and self.device_type == "cuda" else "cpu")
        model.freeze()
        model = model.to(device)
        return model

    def split_audio(self, file_path, chunk_duration_ms=15000):
        audio = AudioSegment.from_file(file_path)
        duration_ms = len(audio)
        if duration_ms > chunk_duration_ms:
            num_chunks = (duration_ms + chunk_duration_ms - 1) // chunk_duration_ms
            chunks = [audio[i*chunk_duration_ms:min((i+1)*chunk_duration_ms, duration_ms)] for i in range(num_chunks)]
            output_dir = "audio_chunks"
            os.makedirs(output_dir, exist_ok=True)
            chunk_file_paths = []
            for i, chunk in enumerate(chunks):
                chunk_file_path = os.path.join(output_dir, f"chunk_{i}.wav")
                chunk.export(chunk_file_path, format="wav")
                chunk_file_paths.append(chunk_file_path)
            return chunk_file_paths
        else:
            return [file_path]

    def cleanup(self):
        output_dir = "audio_chunks"
        if os.path.exists(output_dir):
            shutil.rmtree(output_dir)

app = FastAPI()
asr_manager = ASRModelManager(languages_to_load=["kn", "hi", "ta", "te", "ml"])  # Load Kannada, Hindi, Tamil, Telugu, Malayalam

class TranscriptionResponse(BaseModel):
    text: str

class BatchTranscriptionResponse(BaseModel):
    transcriptions: List[str]

@app.post("/transcribe/", response_model=TranscriptionResponse)
async def transcribe_audio(file: UploadFile = File(...), language: str = Query(..., enum=list(asr_manager.model_language.keys()))):
    start_time = time()
    try:
        file_extension = file.filename.split(".")[-1].lower()
        if file_extension not in ["wav", "mp3"]:
            logging.warning(f"Unsupported file format: {file_extension}")
            raise HTTPException(status_code=400, detail="Unsupported file format. Please upload a WAV or MP3 file.")

        file_content = await file.read()
        if file_extension == "mp3":
            audio = AudioSegment.from_mp3(io.BytesIO(file_content))
        else:
            audio = AudioSegment.from_wav(io.BytesIO(file_content))

        if audio.frame_rate != 16000:
            audio = audio.set_frame_rate(16000).set_channels(1)

        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
            audio.export(tmp_file.name, format="wav")
            tmp_file_path = tmp_file.name

        chunk_file_paths = asr_manager.split_audio(tmp_file_path)

        try:
            language_id = asr_manager.model_language.get(language, "kn")
            model = asr_manager.get_model(language_id)
            model.cur_decoder = "rnnt"

            transcriptions = []
            for chunk_file_path in chunk_file_paths:
                rnnt_texts = model.transcribe([chunk_file_path], batch_size=1, language_id=language_id)[0]
                if isinstance(rnnt_texts, list) and len(rnnt_texts) > 0:
                    transcriptions.append(rnnt_texts[0])
                else:
                    transcriptions.append(rnnt_texts)

            joined_transcriptions = ' '.join(transcriptions)
            end_time = time()
            logging.info(f"Transcription completed in {end_time - start_time:.2f} seconds")
            return JSONResponse(content={"text": joined_transcriptions})

        finally:
            for chunk_file_path in chunk_file_paths:
                if os.path.exists(chunk_file_path):
                    os.remove(chunk_file_path)
            if os.path.exists(tmp_file_path):
                os.remove(tmp_file_path)
            asr_manager.cleanup()

    except HTTPException as e:
        logging.error(f"HTTPException: {str(e)}")
        raise e
    except Exception as e:
        logging.error(f"An unexpected error occurred: {str(e)}")
        raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {str(e)}")

@app.get("/")
async def home():
    return RedirectResponse(url="/docs")

@app.post("/transcribe_batch/", response_model=BatchTranscriptionResponse)
async def transcribe_audio_batch(files: List[UploadFile] = File(...), language: str = Query(..., enum=list(asr_manager.model_language.keys()))):
    start_time = time()
    all_transcriptions = []
    try:
        for file in files:
            file_extension = file.filename.split(".")[-1].lower()
            if file_extension not in ["wav", "mp3"]:
                logging.warning(f"Unsupported file format: {file_extension}")
                raise HTTPException(status_code=400, detail="Unsupported file format. Please upload WAV or MP3 files.")

            file_content = await file.read()
            if file_extension == "mp3":
                audio = AudioSegment.from_mp3(io.BytesIO(file_content))
            else:
                audio = AudioSegment.from_wav(io.BytesIO(file_content))

            if audio.frame_rate != 16000:
                audio = audio.set_frame_rate(16000).set_channels(1)

            with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
                audio.export(tmp_file.name, format="wav")
                tmp_file_path = tmp_file.name

            chunk_file_paths = asr_manager.split_audio(tmp_file_path)

            try:
                language_id = asr_manager.model_language.get(language, "kn")
                model = asr_manager.get_model(language_id)
                model.cur_decoder = "rnnt"

                transcriptions = []
                for chunk_file_path in chunk_file_paths:
                    rnnt_texts = model.transcribe([chunk_file_path], batch_size=1, language_id=language_id)[0]
                    if isinstance(rnnt_texts, list) and len(rnnt_texts) > 0:
                        transcriptions.append(rnnt_texts[0])
                    else:
                        transcriptions.append(rnnt_texts)

                joined_transcriptions = ' '.join(transcriptions)
                all_transcriptions.append(joined_transcriptions)

            finally:
                for chunk_file_path in chunk_file_paths:
                    if os.path.exists(chunk_file_path):
                        os.remove(chunk_file_path)
                if os.path.exists(tmp_file_path):
                    os.remove(tmp_file_path)
                asr_manager.cleanup()

        end_time = time()
        logging.info(f"Batch transcription completed in {end_time - start_time:.2f} seconds")
        return JSONResponse(content={"transcriptions": all_transcriptions})

    except HTTPException as e:
        logging.error(f"HTTPException: {str(e)}")
        raise e
    except Exception as e:
        logging.error(f"An unexpected error occurred: {str(e)}")
        raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {str(e)}")

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run the FastAPI server for ASR.")
    parser.add_argument("--port", type=int, default=8888, help="Port to run the server on.")
    parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the server on.")
    parser.add_argument("--device", type=str, default="cuda", help="Device type to run the model on (cuda or cpu).")
    args = parser.parse_args()

    asr_manager = ASRModelManager(languages_to_load=["kn", "hi", "ta", "te", "ml"], device_type=args.device)
    uvicorn.run(app, host=args.host, port=args.port)