Spaces:
Sleeping
Sleeping
File size: 12,074 Bytes
6a2d9d9 cd681db 6a2d9d9 4e05c0a 6a2d9d9 cd681db 6a2d9d9 cd681db 6a2d9d9 cd681db 6a2d9d9 cd681db 6a2d9d9 cd681db 6a2d9d9 cd681db 6a2d9d9 cd681db 4e05c0a 6a2d9d9 cd681db 4e05c0a 62cf342 6a2d9d9 cd681db 6a2d9d9 cd681db 6a2d9d9 cd681db 6a2d9d9 4e05c0a cd681db 4e05c0a 6a2d9d9 4e05c0a 6a2d9d9 4e05c0a cd681db 6a2d9d9 cd681db 4e05c0a cd681db 6a2d9d9 4e05c0a 6a2d9d9 cd681db 6a2d9d9 4e05c0a cd681db 4e05c0a cd681db 4e05c0a cd681db 4e05c0a cd681db 4e05c0a cd681db 6a2d9d9 cd681db 6a2d9d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import torch
import nemo.collections.asr as nemo_asr
from fastapi import FastAPI, File, UploadFile, HTTPException, Query
from fastapi.responses import RedirectResponse, JSONResponse
from pydantic import BaseModel
from pydub import AudioSegment
import os
import tempfile
import subprocess
import asyncio
import io
import logging
from logging.handlers import RotatingFileHandler
from time import time
from typing import List
import argparse
import uvicorn
import shutil
# Configure logging with log rotation
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
RotatingFileHandler("transcription_api.log", maxBytes=10*1024*1024, backupCount=5),
logging.StreamHandler()
]
)
class ASRModelManager:
def __init__(self, languages_to_load=["kn", "hi", "ta", "te", "ml"], device_type="cuda"):
self.device_type = device_type
self.model_language = {
"kannada": "kn", "hindi": "hi", "malayalam": "ml", "assamese": "as", "bengali": "bn",
"bodo": "brx", "dogri": "doi", "gujarati": "gu", "kashmiri": "ks", "konkani": "kok",
"maithili": "mai", "manipuri": "mni", "marathi": "mr", "nepali": "ne", "odia": "or",
"punjabi": "pa", "sanskrit": "sa", "santali": "sat", "sindhi": "sd", "tamil": "ta",
"telugu": "te", "urdu": "ur"
}
self.config_models = {
"as": "ai4bharat/indicconformer_stt_as_hybrid_rnnt_large",
"bn": "ai4bharat/indicconformer_stt_bn_hybrid_rnnt_large",
"brx": "ai4bharat/indicconformer_stt_brx_hybrid_rnnt_large",
"doi": "ai4bharat/indicconformer_stt_doi_hybrid_rnnt_large",
"gu": "ai4bharat/indicconformer_stt_gu_hybrid_rnnt_large",
"hi": "ai4bharat/indicconformer_stt_hi_hybrid_rnnt_large",
"kn": "ai4bharat/indicconformer_stt_kn_hybrid_rnnt_large",
"ks": "ai4bharat/indicconformer_stt_ks_hybrid_rnnt_large",
"kok": "ai4bharat/indicconformer_stt_kok_hybrid_rnnt_large",
"mai": "ai4bharat/indicconformer_stt_mai_hybrid_rnnt_large",
"ml": "ai4bharat/indicconformer_stt_ml_hybrid_rnnt_large",
"mni": "ai4bharat/indicconformer_stt_mni_hybrid_rnnt_large",
"mr": "ai4bharat/indicconformer_stt_mr_hybrid_rnnt_large",
"ne": "ai4bharat/indicconformer_stt_ne_hybrid_rnnt_large",
"or": "ai4bharat/indicconformer_stt_or_hybrid_rnnt_large",
"pa": "ai4bharat/indicconformer_stt_pa_hybrid_rnnt_large",
"sa": "ai4bharat/indicconformer_stt_sa_hybrid_rnnt_large",
"sat": "ai4bharat/indicconformer_stt_sat_hybrid_rnnt_large",
"sd": "ai4bharat/indicconformer_stt_sd_hybrid_rnnt_large",
"ta": "ai4bharat/indicconformer_stt_ta_hybrid_rnnt_large",
"te": "ai4bharat/indicconformer_stt_te_hybrid_rnnt_large",
"ur": "ai4bharat/indicconformer_stt_ur_hybrid_rnnt_large"
}
# Load models for specified languages on startup
self.models = {}
self.load_initial_models(languages_to_load)
def load_initial_models(self, languages):
device = torch.device(self.device_type if torch.cuda.is_available() and self.device_type == "cuda" else "cpu")
logging.info(f"Loading models on device: {device}")
for lang_id in languages:
if lang_id not in self.config_models:
logging.warning(f"No model available for language ID: {lang_id}. Skipping.")
continue
try:
model_name = self.config_models[lang_id]
logging.info(f"Loading model for {lang_id}: {model_name}")
model = nemo_asr.models.ASRModel.from_pretrained(model_name)
model.freeze() # Set to inference mode
model = model.to(device)
self.models[lang_id] = model
logging.info(f"Successfully loaded model for {lang_id}")
except Exception as e:
logging.error(f"Failed to load model for {lang_id}: {str(e)}")
def get_model(self, language_id):
if language_id not in self.models:
logging.warning(f"Model for {language_id} not pre-loaded. Loading now...")
model = self.load_model(language_id)
self.models[language_id] = model
return self.models[language_id]
def load_model(self, language_id):
model_name = self.config_models.get(language_id, self.config_models["kn"])
model = nemo_asr.models.ASRModel.from_pretrained(model_name)
device = torch.device(self.device_type if torch.cuda.is_available() and self.device_type == "cuda" else "cpu")
model.freeze()
model = model.to(device)
return model
def split_audio(self, file_path, chunk_duration_ms=15000):
audio = AudioSegment.from_file(file_path)
duration_ms = len(audio)
if duration_ms > chunk_duration_ms:
num_chunks = (duration_ms + chunk_duration_ms - 1) // chunk_duration_ms
chunks = [audio[i*chunk_duration_ms:min((i+1)*chunk_duration_ms, duration_ms)] for i in range(num_chunks)]
output_dir = "audio_chunks"
os.makedirs(output_dir, exist_ok=True)
chunk_file_paths = []
for i, chunk in enumerate(chunks):
chunk_file_path = os.path.join(output_dir, f"chunk_{i}.wav")
chunk.export(chunk_file_path, format="wav")
chunk_file_paths.append(chunk_file_path)
return chunk_file_paths
else:
return [file_path]
def cleanup(self):
output_dir = "audio_chunks"
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
app = FastAPI()
asr_manager = ASRModelManager(languages_to_load=["kn", "hi", "ta", "te", "ml"]) # Load Kannada, Hindi, Tamil, Telugu, Malayalam
class TranscriptionResponse(BaseModel):
text: str
class BatchTranscriptionResponse(BaseModel):
transcriptions: List[str]
@app.post("/transcribe/", response_model=TranscriptionResponse)
async def transcribe_audio(file: UploadFile = File(...), language: str = Query(..., enum=list(asr_manager.model_language.keys()))):
start_time = time()
try:
file_extension = file.filename.split(".")[-1].lower()
if file_extension not in ["wav", "mp3"]:
logging.warning(f"Unsupported file format: {file_extension}")
raise HTTPException(status_code=400, detail="Unsupported file format. Please upload a WAV or MP3 file.")
file_content = await file.read()
if file_extension == "mp3":
audio = AudioSegment.from_mp3(io.BytesIO(file_content))
else:
audio = AudioSegment.from_wav(io.BytesIO(file_content))
if audio.frame_rate != 16000:
audio = audio.set_frame_rate(16000).set_channels(1)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
audio.export(tmp_file.name, format="wav")
tmp_file_path = tmp_file.name
chunk_file_paths = asr_manager.split_audio(tmp_file_path)
try:
language_id = asr_manager.model_language.get(language, "kn")
model = asr_manager.get_model(language_id)
model.cur_decoder = "rnnt"
transcriptions = []
for chunk_file_path in chunk_file_paths:
rnnt_texts = model.transcribe([chunk_file_path], batch_size=1, language_id=language_id)[0]
if isinstance(rnnt_texts, list) and len(rnnt_texts) > 0:
transcriptions.append(rnnt_texts[0])
else:
transcriptions.append(rnnt_texts)
joined_transcriptions = ' '.join(transcriptions)
end_time = time()
logging.info(f"Transcription completed in {end_time - start_time:.2f} seconds")
return JSONResponse(content={"text": joined_transcriptions})
finally:
for chunk_file_path in chunk_file_paths:
if os.path.exists(chunk_file_path):
os.remove(chunk_file_path)
if os.path.exists(tmp_file_path):
os.remove(tmp_file_path)
asr_manager.cleanup()
except HTTPException as e:
logging.error(f"HTTPException: {str(e)}")
raise e
except Exception as e:
logging.error(f"An unexpected error occurred: {str(e)}")
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {str(e)}")
@app.get("/")
async def home():
return RedirectResponse(url="/docs")
@app.post("/transcribe_batch/", response_model=BatchTranscriptionResponse)
async def transcribe_audio_batch(files: List[UploadFile] = File(...), language: str = Query(..., enum=list(asr_manager.model_language.keys()))):
start_time = time()
all_transcriptions = []
try:
for file in files:
file_extension = file.filename.split(".")[-1].lower()
if file_extension not in ["wav", "mp3"]:
logging.warning(f"Unsupported file format: {file_extension}")
raise HTTPException(status_code=400, detail="Unsupported file format. Please upload WAV or MP3 files.")
file_content = await file.read()
if file_extension == "mp3":
audio = AudioSegment.from_mp3(io.BytesIO(file_content))
else:
audio = AudioSegment.from_wav(io.BytesIO(file_content))
if audio.frame_rate != 16000:
audio = audio.set_frame_rate(16000).set_channels(1)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
audio.export(tmp_file.name, format="wav")
tmp_file_path = tmp_file.name
chunk_file_paths = asr_manager.split_audio(tmp_file_path)
try:
language_id = asr_manager.model_language.get(language, "kn")
model = asr_manager.get_model(language_id)
model.cur_decoder = "rnnt"
transcriptions = []
for chunk_file_path in chunk_file_paths:
rnnt_texts = model.transcribe([chunk_file_path], batch_size=1, language_id=language_id)[0]
if isinstance(rnnt_texts, list) and len(rnnt_texts) > 0:
transcriptions.append(rnnt_texts[0])
else:
transcriptions.append(rnnt_texts)
joined_transcriptions = ' '.join(transcriptions)
all_transcriptions.append(joined_transcriptions)
finally:
for chunk_file_path in chunk_file_paths:
if os.path.exists(chunk_file_path):
os.remove(chunk_file_path)
if os.path.exists(tmp_file_path):
os.remove(tmp_file_path)
asr_manager.cleanup()
end_time = time()
logging.info(f"Batch transcription completed in {end_time - start_time:.2f} seconds")
return JSONResponse(content={"transcriptions": all_transcriptions})
except HTTPException as e:
logging.error(f"HTTPException: {str(e)}")
raise e
except Exception as e:
logging.error(f"An unexpected error occurred: {str(e)}")
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {str(e)}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the FastAPI server for ASR.")
parser.add_argument("--port", type=int, default=8888, help="Port to run the server on.")
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the server on.")
parser.add_argument("--device", type=str, default="cuda", help="Device type to run the model on (cuda or cpu).")
args = parser.parse_args()
asr_manager = ASRModelManager(languages_to_load=["kn", "hi", "ta", "te", "ml"], device_type=args.device)
uvicorn.run(app, host=args.host, port=args.port) |