Spaces:
Sleeping
Sleeping
File size: 12,534 Bytes
6a2d9d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
Your code is a well-structured FastAPI application for transcribing audio files using NVIDIA NeMo ASR models, supporting multiple Indian languages and batch processing. It includes logging, audio preprocessing, and error handling, which are solid foundations for a production-ready service. However, there are several areas where improvements can be made to reduce latency, increase throughput (serve more users), and ensure production readiness. Below, I’ll suggest enhancements and identify missing elements for a robust production deployment.
Key Improvements for Latency and Scalability
1. Optimize Model Inference
Mixed Precision: Enable mixed-precision inference with torch.cuda.amp.autocast (currently commented out) to reduce latency on CUDA GPUs. This uses bfloat16 or float16, cutting computation time without significant accuracy loss.
python
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
rnnt_texts = asr_manager.model.transcribe(chunk_file_paths, batch_size=1, language_id=language_id)
CUDA Graphs: If using NeMo 2.0.0+, enable CUDA Graphs for repeated inference calls to reduce kernel launch overhead. This requires a fixed input shape, so test compatibility with dynamic audio lengths.
Batch Size: Dynamically adjust batch_size based on input size or GPU memory. Currently, it’s hardcoded (1 for single files, len(files) for batch). For larger batches, process in smaller chunks to avoid OOM errors:
python
batch_size = min(len(chunk_file_paths), 32) # Cap at 32, adjust based on GPU memory
rnnt_texts = asr_manager.model.transcribe(chunk_file_paths, batch_size=batch_size, language_id=language_id)
2. Model Management
Preload Models: Loading a new model for every language switch (e.g., load_model) is slow and memory-intensive. Preload all required models at startup if memory allows, or use a caching mechanism:
python
class ASRModelManager:
def __init__(self, default_language="kn"):
self.models = {}
self.default_language = default_language
self.load_initial_model(default_language)
def load_initial_model(self, language_id):
model = self.load_model(language_id)
self.models[language_id] = model
def get_model(self, language_id):
if language_id not in self.models:
self.models[language_id] = self.load_model(language_id)
return self.models[language_id]
Then update /transcribe/ and /transcribe_batch/ to use asr_manager.get_model(language_id) instead of reloading.
Model Sharing: Ensure thread-safety when sharing models across requests. FastAPI runs async, so use a lock if multiple workers access the same model:
python
from threading import Lock
class ASRModelManager:
def __init__(self, default_language="kn"):
self.model_locks = {lang: Lock() for lang in self.model_language.keys()}
...
async def transcribe(self, paths, language_id, batch_size):
with self.model_locks[language_id]:
model = self.get_model(language_id)
return model.transcribe(paths, batch_size=batch_size, language_id=language_id)
3. Audio Preprocessing
In-Memory Processing: Avoid writing to disk with temporary files (tempfile.NamedTemporaryFile) and splitting chunks to disk (split_audio). Process audio in memory to reduce I/O latency:
python
def split_audio_in_memory(self, audio_segment, chunk_duration_ms=15000):
duration_ms = len(audio_segment)
if duration_ms <= chunk_duration_ms:
return [audio_segment]
chunks = [audio_segment[i:i + chunk_duration_ms] for i in range(0, duration_ms, chunk_duration_ms)]
return chunks
Modify /transcribe/ to:
python
audio_chunks = asr_manager.split_audio_in_memory(audio)
chunk_buffers = [io.BytesIO() for _ in audio_chunks]
for chunk, buffer in zip(audio_chunks, chunk_buffers):
chunk.export(buffer, format="wav")
buffer.seek(0)
rnnt_texts = asr_manager.model.transcribe(chunk_buffers, batch_size=len(chunk_buffers), language_id=language_id)
Async Preprocessing: Offload audio conversion (e.g., sample rate adjustment) to an async task or worker queue to free up the main thread.
4. Async and Concurrency
Worker Queue: For heavy loads, integrate a task queue (e.g., Celery with Redis) to handle transcription jobs asynchronously. This decouples preprocessing and inference from the HTTP response:
python
from celery import Celery
celery_app = Celery('asr', broker='redis://localhost:6379/0')
@celery_app.task
def transcribe_task(file_paths, language_id):
model = asr_manager.get_model(language_id)
return model.transcribe(file_paths, batch_size=len(file_paths), language_id=language_id)
@app.post("/transcribe_async/")
async def transcribe_async(file: UploadFile = File(...), language: str = Query(...)):
# Save file temporarily or process in memory
task = transcribe_task.delay([tmp_file_path], asr_manager.model_language[language])
return {"task_id": task.id}
Increase Workers: Run FastAPI with multiple Uvicorn workers (uvicorn --workers 4) to handle concurrent requests, leveraging multiple CPU cores.
5. FastAPI Performance
Response Streaming: For long transcriptions, stream results back to the client instead of waiting for full processing:
python
from fastapi.responses import StreamingResponse
async def stream_transcriptions(chunk_file_paths, language_id):
model = asr_manager.get_model(language_id)
for chunk in chunk_file_paths:
text = model.transcribe([chunk], batch_size=1, language_id=language_id)[0]
yield f"data: {text}\n\n"
@app.post("/transcribe_stream/")
async def transcribe_stream(file: UploadFile = File(...), language: str = Query(...)):
audio_chunks = asr_manager.split_audio(tmp_file_path)
return StreamingResponse(stream_transcriptions(audio_chunks, asr_manager.model_language[language]), media_type="text/event-stream")
Rate Limiting: Add rate limiting (e.g., slowapi) to prevent overload:
python
from slowapi import Limiter
from slowapi.util import get_remote_address
limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter
@app.post("/transcribe/", response_model=TranscriptionResponse)
@limiter.limit("10/minute")
async def transcribe_audio(...):
...
Production Readiness: Missing Elements
1. Scalability
Load Balancing: Deploy behind a load balancer (e.g., NGINX, HAProxy) to distribute requests across multiple instances.
Containerization: Use Docker for consistent deployment:
dockerfile
FROM nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu20.04
RUN apt-get update && apt-get install -y python3-pip ffmpeg
RUN pip3 install torch nemo_toolkit[asr] fastapi uvicorn pydub
COPY . /app
WORKDIR /app
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000", "--workers", "4"]
Build and run:
bash
docker build -t asr-api .
docker run --gpus all -p 8000:8000 asr-api
Horizontal Scaling: Use Kubernetes or Docker Swarm to scale instances based on demand.
2. Monitoring and Logging
Metrics: Add Prometheus metrics (e.g., prometheus-fastapi-instrumentator) to track latency, request rate, and errors:
python
from prometheus_fastapi_instrumentator import Instrumentator
Instrumentator().instrument(app).expose(app)
Distributed Logging: Send logs to a centralized system (e.g., ELK Stack, Loki) instead of local files for better analysis.
3. Security
Authentication: Add API key or JWT authentication (e.g., fastapi-users) to restrict access.
Input Validation: Validate audio file size and duration to prevent abuse:
python
MAX_FILE_SIZE = 50 * 1024 * 1024 # 50MB
if len(file_content) > MAX_FILE_SIZE:
raise HTTPException(status_code=400, detail="File too large")
HTTPS: Configure SSL/TLS with NGINX or a cloud provider.
4. Error Handling and Resilience
Retry Logic: Add retries for transient failures (e.g., model inference errors) using tenacity:
python
from tenacity import retry, stop_after_attempt, wait_fixed
@retry(stop=stop_after_attempt(3), wait=wait_fixed(2))
def transcribe_with_retry(model, paths, batch_size, language_id):
return model.transcribe(paths, batch_size=batch_size, language_id=language_id)
Graceful Degradation: If a model fails to load, fall back to a default (e.g., Kannada).
5. Configuration
Environment Variables: Use python-dotenv or pydantic-settings for configurable settings (e.g., port, host, chunk duration):
python
from pydantic_settings import BaseSettings
class Settings(BaseSettings):
host: str = "127.0.0.1"
port: int = 8000
chunk_duration_ms: int = 15000
settings = Settings()
uvicorn.run(app, host=settings.host, port=settings.port)
Final Optimized Code Snippet
Here’s an example incorporating some key improvements:
python
import torch
import nemo.collections.asr as nemo_asr
from fastapi import FastAPI, File, UploadFile, HTTPException, Query
from fastapi.responses import JSONResponse
from pydub import AudioSegment
import io
import logging
from threading import Lock
app = FastAPI()
logging.basicConfig(level=logging.INFO)
class ASRModelManager:
def __init__(self, default_language="kn"):
self.default_language = default_language
self.model_language = {...} # Same as original
self.config_models = {...} # Same as original
self.models = {}
self.model_locks = {lang: Lock() for lang in self.model_language.keys()}
self.load_initial_model(default_language)
def load_model(self, language_id):
model = nemo_asr.models.ASRModel.from_pretrained(self.config_models[language_id])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
return model.to(device).eval()
def load_initial_model(self, language_id):
self.models[language_id] = self.load_model(language_id)
def get_model(self, language_id):
if language_id not in self.models:
with self.model_locks[language_id]:
if language_id not in self.models: # Double-check locking
self.models[language_id] = self.load_model(language_id)
return self.models[language_id]
def split_audio_in_memory(self, audio_segment, chunk_duration_ms=15000):
duration_ms = len(audio_segment)
if duration_ms <= chunk_duration_ms:
return [audio_segment]
return [audio_segment[i:i + chunk_duration_ms] for i in range(0, duration_ms, chunk_duration_ms)]
asr_manager = ASRModelManager()
@app.post("/transcribe/")
async def transcribe_audio(file: UploadFile = File(...), language: str = Query(...)):
file_content = await file.read()
audio = AudioSegment.from_file(io.BytesIO(file_content), format=file.filename.split(".")[-1].lower())
if audio.frame_rate != 16000:
audio = audio.set_frame_rate(16000).set_channels(1)
audio_chunks = asr_manager.split_audio_in_memory(audio)
chunk_buffers = [io.BytesIO() for _ in audio_chunks]
for chunk, buffer in zip(audio_chunks, chunk_buffers):
chunk.export(buffer, format="wav")
buffer.seek(0)
language_id = asr_manager.model_language.get(language, asr_manager.default_language)
model = asr_manager.get_model(language_id)
model.cur_decoder = "rnnt"
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
rnnt_texts = model.transcribe(chunk_buffers, batch_size=min(len(chunk_buffers), 32), language_id=language_id)
text = " ".join(rnnt_texts)
return JSONResponse(content={"text": text})
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000, workers=4)
Summary
Latency: Mixed precision, in-memory processing, and dynamic batching reduce inference time.
Scalability: Preloaded models, async workers, and Triton (as an alternative) handle more users.
Production: Add monitoring, security, and containerization for reliability.
For maximum performance, consider switching to NVIDIA Triton Inference Server (as suggested previously) instead of FastAPI if inference throughput is the top priority. Let me know if you’d like a deeper dive into any specific improvement! |