Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,8 @@ from models import SynthesizerTrn
|
|
| 10 |
from text import text_to_sequence
|
| 11 |
from mel_processing import spectrogram_torch
|
| 12 |
|
|
|
|
|
|
|
| 13 |
|
| 14 |
def get_text(text, hps):
|
| 15 |
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
|
|
@@ -21,7 +23,7 @@ def get_text(text, hps):
|
|
| 21 |
|
| 22 |
def create_tts_fn(model, hps, speaker_ids):
|
| 23 |
def tts_fn(text, speaker, speed):
|
| 24 |
-
if len(text) > 150:
|
| 25 |
return "Error: Text is too long", None
|
| 26 |
speaker_id = speaker_ids[speaker]
|
| 27 |
stn_tst = get_text(text, hps)
|
|
@@ -31,6 +33,7 @@ def create_tts_fn(model, hps, speaker_ids):
|
|
| 31 |
sid = LongTensor([speaker_id])
|
| 32 |
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
|
| 33 |
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
|
|
|
|
| 34 |
return "Success", (hps.data.sampling_rate, audio)
|
| 35 |
|
| 36 |
return tts_fn
|
|
@@ -42,7 +45,7 @@ def create_vc_fn(model, hps, speaker_ids):
|
|
| 42 |
return "You need to upload an audio", None
|
| 43 |
sampling_rate, audio = input_audio
|
| 44 |
duration = audio.shape[0] / sampling_rate
|
| 45 |
-
if duration >
|
| 46 |
return "Error: Audio is too long", None
|
| 47 |
original_speaker_id = speaker_ids[original_speaker]
|
| 48 |
target_speaker_id = speaker_ids[target_speaker]
|
|
@@ -52,17 +55,18 @@ def create_vc_fn(model, hps, speaker_ids):
|
|
| 52 |
audio = librosa.to_mono(audio.transpose(1, 0))
|
| 53 |
if sampling_rate != hps.data.sampling_rate:
|
| 54 |
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
|
| 55 |
-
y = torch.FloatTensor(audio)
|
| 56 |
-
y = y.unsqueeze(0)
|
| 57 |
-
spec = spectrogram_torch(y, hps.data.filter_length,
|
| 58 |
-
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
| 59 |
-
center=False)
|
| 60 |
-
spec_lengths = LongTensor([spec.size(-1)])
|
| 61 |
-
sid_src = LongTensor([original_speaker_id])
|
| 62 |
-
sid_tgt = LongTensor([target_speaker_id])
|
| 63 |
with no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
|
| 65 |
0, 0].data.cpu().float().numpy()
|
|
|
|
| 66 |
return "Success", (hps.data.sampling_rate, audio)
|
| 67 |
|
| 68 |
return vc_fn
|
|
@@ -103,10 +107,10 @@ if __name__ == '__main__':
|
|
| 103 |
with gr.Tabs():
|
| 104 |
with gr.TabItem("TTS"):
|
| 105 |
with gr.Tabs():
|
| 106 |
-
for i, (
|
| 107 |
with gr.TabItem(f"model{i}"):
|
| 108 |
with gr.Column():
|
| 109 |
-
gr.Markdown(f"## {
|
| 110 |
f"")
|
| 111 |
tts_input1 = gr.TextArea(label="Text (150 words limitation)", value="γγγ«γ‘γ―γ")
|
| 112 |
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
|
|
@@ -119,18 +123,19 @@ if __name__ == '__main__':
|
|
| 119 |
[tts_output1, tts_output2])
|
| 120 |
with gr.TabItem("Voice Conversion"):
|
| 121 |
with gr.Tabs():
|
| 122 |
-
for i, (
|
| 123 |
with gr.TabItem(f"model{i}"):
|
| 124 |
-
gr.Markdown(f"## {
|
| 125 |
f"")
|
| 126 |
vc_input1 = gr.Dropdown(label="Original Speaker", choices=speakers, type="index",
|
| 127 |
value=speakers[0])
|
| 128 |
vc_input2 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
|
| 129 |
value=speakers[1])
|
| 130 |
-
vc_input3 = gr.Audio(label="Input Audio (
|
| 131 |
vc_submit = gr.Button("Convert", variant="primary")
|
| 132 |
vc_output1 = gr.Textbox(label="Output Message")
|
| 133 |
vc_output2 = gr.Audio(label="Output Audio")
|
| 134 |
vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2])
|
| 135 |
|
| 136 |
-
app.launch()
|
|
|
|
|
|
| 10 |
from text import text_to_sequence
|
| 11 |
from mel_processing import spectrogram_torch
|
| 12 |
|
| 13 |
+
limitation = True # limit text and audio length
|
| 14 |
+
|
| 15 |
|
| 16 |
def get_text(text, hps):
|
| 17 |
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
|
|
|
|
| 23 |
|
| 24 |
def create_tts_fn(model, hps, speaker_ids):
|
| 25 |
def tts_fn(text, speaker, speed):
|
| 26 |
+
if limitation and len(text) > 150:
|
| 27 |
return "Error: Text is too long", None
|
| 28 |
speaker_id = speaker_ids[speaker]
|
| 29 |
stn_tst = get_text(text, hps)
|
|
|
|
| 33 |
sid = LongTensor([speaker_id])
|
| 34 |
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8,
|
| 35 |
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy()
|
| 36 |
+
del stn_tst, x_tst, x_tst_lengths, sid
|
| 37 |
return "Success", (hps.data.sampling_rate, audio)
|
| 38 |
|
| 39 |
return tts_fn
|
|
|
|
| 45 |
return "You need to upload an audio", None
|
| 46 |
sampling_rate, audio = input_audio
|
| 47 |
duration = audio.shape[0] / sampling_rate
|
| 48 |
+
if limitation and duration > 20:
|
| 49 |
return "Error: Audio is too long", None
|
| 50 |
original_speaker_id = speaker_ids[original_speaker]
|
| 51 |
target_speaker_id = speaker_ids[target_speaker]
|
|
|
|
| 55 |
audio = librosa.to_mono(audio.transpose(1, 0))
|
| 56 |
if sampling_rate != hps.data.sampling_rate:
|
| 57 |
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
with no_grad():
|
| 59 |
+
y = torch.FloatTensor(audio)
|
| 60 |
+
y = y.unsqueeze(0)
|
| 61 |
+
spec = spectrogram_torch(y, hps.data.filter_length,
|
| 62 |
+
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length,
|
| 63 |
+
center=False)
|
| 64 |
+
spec_lengths = LongTensor([spec.size(-1)])
|
| 65 |
+
sid_src = LongTensor([original_speaker_id])
|
| 66 |
+
sid_tgt = LongTensor([target_speaker_id])
|
| 67 |
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][
|
| 68 |
0, 0].data.cpu().float().numpy()
|
| 69 |
+
del y, spec, spec_lengths, sid_src, sid_tgt
|
| 70 |
return "Success", (hps.data.sampling_rate, audio)
|
| 71 |
|
| 72 |
return vc_fn
|
|
|
|
| 107 |
with gr.Tabs():
|
| 108 |
with gr.TabItem("TTS"):
|
| 109 |
with gr.Tabs():
|
| 110 |
+
for i, (model_name, cover_path, speakers, tts_fn, vc_fn) in enumerate(models):
|
| 111 |
with gr.TabItem(f"model{i}"):
|
| 112 |
with gr.Column():
|
| 113 |
+
gr.Markdown(f"## {model_name}\n\n"
|
| 114 |
f"")
|
| 115 |
tts_input1 = gr.TextArea(label="Text (150 words limitation)", value="γγγ«γ‘γ―γ")
|
| 116 |
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
|
|
|
|
| 123 |
[tts_output1, tts_output2])
|
| 124 |
with gr.TabItem("Voice Conversion"):
|
| 125 |
with gr.Tabs():
|
| 126 |
+
for i, (model_name, cover_path, speakers, tts_fn, vc_fn) in enumerate(models):
|
| 127 |
with gr.TabItem(f"model{i}"):
|
| 128 |
+
gr.Markdown(f"## {model_name}\n\n"
|
| 129 |
f"")
|
| 130 |
vc_input1 = gr.Dropdown(label="Original Speaker", choices=speakers, type="index",
|
| 131 |
value=speakers[0])
|
| 132 |
vc_input2 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
|
| 133 |
value=speakers[1])
|
| 134 |
+
vc_input3 = gr.Audio(label="Input Audio (20s limitation)")
|
| 135 |
vc_submit = gr.Button("Convert", variant="primary")
|
| 136 |
vc_output1 = gr.Textbox(label="Output Message")
|
| 137 |
vc_output2 = gr.Audio(label="Output Audio")
|
| 138 |
vc_submit.click(vc_fn, [vc_input1, vc_input2, vc_input3], [vc_output1, vc_output2])
|
| 139 |
|
| 140 |
+
# app.launch()
|
| 141 |
+
app.queue(client_position_to_load_data=10).launch()
|