File size: 2,204 Bytes
a9d25c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# Avoid multiple imports of the same module. Use this to import the module only once.
# Also, ensure that the device and pretrained models folder are consistent across the project.

import os
import torch

global low_vram_mode
low_vram_mode = False


def use_lower_vram():
    global low_vram_mode
    low_vram_mode = True


def get_device():
    device = torch.device("cuda") # must use GPU in online demo version
    return device


def set_random_seed(seed: int):
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def get_pretrained_models_folder():
    return os.path.join(os.path.dirname(__file__), "../pretrained-models")


# def download_pretrained_models():
#     pretrained_models_folder = get_pretrained_models_folder()
#     # hard-coded download links
#     groundingdino_link = "https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth"
#     sam_link           = "https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth"
#     ram_link           = "https://huggingface.co/xinyu1205/recognize-anything-plus-model/resolve/main/ram_plus_swin_large_14m.pth"
#     groundingdino_ckpt = os.path.join(pretrained_models_folder, "checkpoints/groundingdino_swint_ogc.pth")
#     sam_ckpt           = os.path.join(pretrained_models_folder, "checkpoints/sam_hq_vit_l.pth")
#     ram_ckpt           = os.path.join(pretrained_models_folder, "checkpoints/ram_plus_swin_large_14m.pth")

#     # download pretrained models if not exists
#     if not os.path.exists(groundingdino_ckpt):
#         print(f"Downloading pretrained model: {groundingdino_ckpt}")
#         os.system(f"wget -O {groundingdino_ckpt} {groundingdino_link} -q")
#     if not os.path.exists(sam_ckpt):
#         print(f"Downloading pretrained model: {sam_ckpt}")
#         os.system(f"wget -O {sam_ckpt} {sam_link} -q")
#     if not os.path.exists(ram_ckpt):
#         print(f"Downloading pretrained model: {ram_ckpt}")
#         os.system(f"wget -O {ram_ckpt} {ram_link} -q")


# # download pretrained models when imported
# download_pretrained_models()