Spaces:
Running
on
Zero
Running
on
Zero
add ZeroGPU support
Browse files- inference_utils.py +8 -8
inference_utils.py
CHANGED
|
@@ -21,7 +21,7 @@ from diffusers import DDIMScheduler, ControlNetModel
|
|
| 21 |
from diffusers import UNet2DConditionModel as OriginalUNet2DConditionModel
|
| 22 |
from detail_encoder.encoder_plus import detail_encoder
|
| 23 |
|
| 24 |
-
|
| 25 |
|
| 26 |
def get_draw(pil_img, size):
|
| 27 |
cv2_img = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
|
@@ -63,23 +63,23 @@ def init_pipeline():
|
|
| 63 |
id_encoder_path = base_path + "/pytorch_model_1.bin"
|
| 64 |
pose_encoder_path = base_path + "/pytorch_model_2.bin"
|
| 65 |
|
| 66 |
-
Unet = OriginalUNet2DConditionModel.from_pretrained(model_id, subfolder="unet")
|
| 67 |
id_encoder = ControlNetModel.from_unet(Unet)
|
| 68 |
pose_encoder = ControlNetModel.from_unet(Unet)
|
| 69 |
-
makeup_encoder = detail_encoder(Unet, "openai/clip-vit-large-patch14",
|
| 70 |
id_state_dict = torch.load(id_encoder_path)
|
| 71 |
pose_state_dict = torch.load(pose_encoder_path)
|
| 72 |
makeup_state_dict = torch.load(makeup_encoder_path)
|
| 73 |
id_encoder.load_state_dict(id_state_dict, strict=False)
|
| 74 |
pose_encoder.load_state_dict(pose_state_dict, strict=False)
|
| 75 |
makeup_encoder.load_state_dict(makeup_state_dict, strict=False)
|
| 76 |
-
id_encoder.to(
|
| 77 |
-
pose_encoder.to(
|
| 78 |
-
makeup_encoder.to(
|
| 79 |
|
| 80 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 81 |
-
model_id, safety_checker=None, unet=Unet, controlnet=[id_encoder, pose_encoder], torch_dtype=torch.
|
| 82 |
-
).to(
|
| 83 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 84 |
return pipe, makeup_encoder
|
| 85 |
|
|
|
|
| 21 |
from diffusers import UNet2DConditionModel as OriginalUNet2DConditionModel
|
| 22 |
from detail_encoder.encoder_plus import detail_encoder
|
| 23 |
|
| 24 |
+
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
|
| 25 |
|
| 26 |
def get_draw(pil_img, size):
|
| 27 |
cv2_img = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
|
|
|
| 63 |
id_encoder_path = base_path + "/pytorch_model_1.bin"
|
| 64 |
pose_encoder_path = base_path + "/pytorch_model_2.bin"
|
| 65 |
|
| 66 |
+
Unet = OriginalUNet2DConditionModel.from_pretrained(model_id, device=device, subfolder="unet")
|
| 67 |
id_encoder = ControlNetModel.from_unet(Unet)
|
| 68 |
pose_encoder = ControlNetModel.from_unet(Unet)
|
| 69 |
+
makeup_encoder = detail_encoder(Unet, "openai/clip-vit-large-patch14", device=device, dtype=torch.float16)
|
| 70 |
id_state_dict = torch.load(id_encoder_path)
|
| 71 |
pose_state_dict = torch.load(pose_encoder_path)
|
| 72 |
makeup_state_dict = torch.load(makeup_encoder_path)
|
| 73 |
id_encoder.load_state_dict(id_state_dict, strict=False)
|
| 74 |
pose_encoder.load_state_dict(pose_state_dict, strict=False)
|
| 75 |
makeup_encoder.load_state_dict(makeup_state_dict, strict=False)
|
| 76 |
+
id_encoder.to(device=device)
|
| 77 |
+
pose_encoder.to(device=device)
|
| 78 |
+
makeup_encoder.to(device=device)
|
| 79 |
|
| 80 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 81 |
+
model_id, safety_checker=None, unet=Unet, controlnet=[id_encoder, pose_encoder], device=device, torch_dtype=torch.float16
|
| 82 |
+
).to(device=device)
|
| 83 |
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 84 |
return pipe, makeup_encoder
|
| 85 |
|