sksameermujahid's picture
Update app.py
530c47c verified
import requests
from PIL import Image
import io
import os
import torch
import torch.nn.functional as F
from transformers import CLIPProcessor, CLIPModel, AutoImageProcessor, AutoModelForImageClassification
import numpy as np
import chromadb
from flask import Flask, request, jsonify, render_template, send_file
from werkzeug.utils import secure_filename
import threading
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
import multiprocessing
from functools import partial
import tempfile
import shutil
import warnings
from pathlib import Path
import asyncio
import aiohttp
import aiofiles
from typing import List, Dict, Any, Optional
import logging
import schedule
# Suppress warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
# Set up cache directories for Hugging Face deployment
os.environ['HF_HOME'] = '/tmp/huggingface_cache'
os.environ['XDG_CACHE_HOME'] = '/tmp/huggingface_cache'
# Create cache directories if they don't exist
os.makedirs('/tmp/huggingface_cache', exist_ok=True)
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize Flask app
app = Flask(__name__, template_folder='templates')
app.config['UPLOAD_FOLDER'] = '/tmp/uploads'
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
# Global variables for model and collection
clip_model = None
clip_processor = None
property_classifier = None
property_processor = None
collection = None
client = None
downloaded_images = [] # Make this global
initialization_status = "Initializing..."
# Performance configuration
MAX_DOWNLOAD_WORKERS = 32 # Increased from 16
MAX_EMBEDDING_WORKERS = 24 # Increased from 12
MAX_PROCESS_WORKERS = min(16, multiprocessing.cpu_count())
BATCH_SIZE = 100 # Process embeddings in batches
CHUNK_SIZE = 50 # Download images in chunks
# Cache for embeddings to avoid reprocessing
embedding_cache = {}
cache_lock = threading.Lock()
# Progress tracking
initialization_progress = 0
initialization_start_time = time.time()
# Function to fetch image data from the API
def fetch_image_data(api_url):
"""Fetch image data from API with retry mechanism without timeouts"""
max_retries = 5 # Increased retries
for attempt in range(max_retries):
try:
# Remove timeout for maximum reliability
response = requests.get(api_url, timeout=None)
response.raise_for_status()
data = response.json()
logger.info(f"Successfully fetched {len(data)} images from API")
return data
except requests.exceptions.Timeout:
logger.warning(f"Timeout fetching data (attempt {attempt + 1})")
if attempt == max_retries - 1:
logger.error(f"Failed to fetch image data after {max_retries} attempts due to timeouts")
return []
time.sleep(5 * (attempt + 1)) # Progressive backoff
except requests.exceptions.RequestException as e:
logger.warning(f"Request error (attempt {attempt + 1}): {e}")
if attempt == max_retries - 1:
logger.error(f"Failed to fetch image data after {max_retries} attempts")
return []
time.sleep(5 * (attempt + 1)) # Progressive backoff
except Exception as e:
logger.error(f"Unexpected error fetching data (attempt {attempt + 1}): {e}")
if attempt == max_retries - 1:
return []
time.sleep(5 * (attempt + 1))
return []
async def download_single_image_async(session, item):
"""Async version of image download for better performance without timeouts"""
try:
# Try different possible field names for image URL
image_url = item.get('cloudinaryUrl') or item.get('imageUrl') or item.get('image_url') or item.get('url')
image_id = item.get('id')
property_id = item.get('propertyId')
if not image_url or not image_id:
return None
# Create temp directory if it doesn't exist
temp_dir = Path('/tmp/property_images')
temp_dir.mkdir(exist_ok=True)
# Generate filename
file_extension = image_url.split('.')[-1].split('?')[0]
if file_extension not in ['jpg', 'jpeg', 'png', 'webp']:
file_extension = 'jpg'
filename = f"{image_id}.{file_extension}"
filepath = temp_dir / filename
# Check if file already exists
if filepath.exists():
return {
'id': image_id,
'propertyId': property_id,
'filepath': str(filepath),
'imageUrl': image_url
}
# Download image without timeout for maximum reliability
async with session.get(image_url) as response:
if response.status == 200:
content = await response.read()
# Save image
async with aiofiles.open(filepath, 'wb') as f:
await f.write(content)
logger.debug(f"Successfully downloaded {image_url} -> {filepath}")
return {
'id': image_id,
'propertyId': property_id,
'filepath': str(filepath),
'imageUrl': image_url
}
else:
logger.warning(f"Failed to download {image_url}: HTTP {response.status}")
return None
except asyncio.TimeoutError:
logger.warning(f"Timeout downloading {image_url}")
return None
except aiohttp.ClientError as e:
logger.warning(f"Client error downloading {image_url}: {e}")
return None
except Exception as e:
logger.error(f"Error downloading {image_url}: {e}")
return None
def download_single_image(item):
"""Synchronous version for ThreadPoolExecutor fallback without timeouts"""
try:
# Try different possible field names for image URL
image_url = item.get('cloudinaryUrl') or item.get('imageUrl') or item.get('image_url') or item.get('url')
image_id = item.get('id')
property_id = item.get('propertyId')
if not image_url or not image_id:
return None
# Create temp directory if it doesn't exist
temp_dir = Path('/tmp/property_images')
temp_dir.mkdir(exist_ok=True)
# Generate filename
file_extension = image_url.split('.')[-1].split('?')[0]
if file_extension not in ['jpg', 'jpeg', 'png', 'webp']:
file_extension = 'jpg'
filename = f"{image_id}.{file_extension}"
filepath = temp_dir / filename
# Check if file already exists
if filepath.exists():
return {
'id': image_id,
'propertyId': property_id,
'filepath': str(filepath),
'imageUrl': image_url
}
# Download image without timeout for maximum reliability
for attempt in range(3):
try:
# Remove timeout for maximum reliability
response = requests.get(image_url, stream=True, timeout=None)
response.raise_for_status()
with open(filepath, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
return {
'id': image_id,
'propertyId': property_id,
'filepath': str(filepath),
'imageUrl': image_url
}
except requests.exceptions.Timeout:
logger.warning(f"Timeout downloading {image_url} (attempt {attempt + 1})")
if attempt == 2: # Last attempt
return None
time.sleep(2)
except requests.exceptions.RequestException as e:
logger.warning(f"Request error downloading {image_url} (attempt {attempt + 1}): {e}")
if attempt == 2: # Last attempt
return None
time.sleep(2)
except Exception as e:
logger.error(f"Unexpected error downloading {image_url} (attempt {attempt + 1}): {e}")
if attempt == 2: # Last attempt
return None
time.sleep(2)
except Exception as e:
logger.error(f"Error processing image from {image_url}: {e}")
return None
# Function to download and process images with optimized parallel processing
def download_and_process_images(image_data, num_properties=600, max_workers=MAX_DOWNLOAD_WORKERS):
"""Download and process images with optimized parallel processing"""
temp_dir = Path('/tmp/property_images')
temp_dir.mkdir(exist_ok=True)
downloaded_images = []
processed_property_ids = set()
property_image_data = {}
# Group images by property
for item in image_data:
property_id = item.get('propertyId')
if property_id is not None:
if property_id not in property_image_data:
property_image_data[property_id] = []
property_image_data[property_id].append(item)
# Get properties to process
properties_to_process = list(property_image_data.items())[:num_properties]
all_images_to_process = []
for property_id, images in properties_to_process:
processed_property_ids.add(property_id)
all_images_to_process.extend(images)
logger.info(f"Starting optimized parallel download of {len(all_images_to_process)} images using {max_workers} workers...")
# Use ThreadPoolExecutor with increased workers for faster processing
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all download tasks
future_to_item = {executor.submit(download_single_image, item): item for item in all_images_to_process}
# Collect results as they complete with better progress tracking
completed_count = 0
for future in as_completed(future_to_item):
result = future.result()
if result is not None:
downloaded_images.append(result)
completed_count += 1
if completed_count % 50 == 0: # Show progress every 50 images
logger.info(f"Downloaded {completed_count}/{len(all_images_to_process)} images ({completed_count/len(all_images_to_process)*100:.1f}%)")
logger.info(f"βœ… Finished downloading. Successfully processed images from {len(processed_property_ids)} properties. Total images downloaded: {len(downloaded_images)}")
return downloaded_images
async def download_images_async(image_data, num_properties=600):
"""Ultra-fast async image downloading with optimized performance"""
temp_dir = Path('/tmp/property_images')
temp_dir.mkdir(exist_ok=True)
downloaded_images = []
processed_property_ids = set()
property_image_data = {}
# Group images by property
for item in image_data:
property_id = item.get('propertyId')
if property_id is not None:
if property_id not in property_image_data:
property_image_data[property_id] = []
property_image_data[property_id].append(item)
# Get properties to process
properties_to_process = list(property_image_data.items())[:num_properties]
all_images_to_process = []
for property_id, images in properties_to_process:
processed_property_ids.add(property_id)
all_images_to_process.extend(images)
logger.info(f"πŸš€ Starting ultra-fast async download of {len(all_images_to_process)} images...")
# Optimized semaphore for maximum concurrency
max_concurrent = min(64, len(all_images_to_process)) # Dynamic concurrency
semaphore = asyncio.Semaphore(max_concurrent)
logger.info(f"⚑ Using {max_concurrent} concurrent downloads")
# Ultra-optimized session configuration
connector = aiohttp.TCPConnector(
limit=max_concurrent,
limit_per_host=50, # Very high per-host limit
ttl_dns_cache=600, # Cache DNS for 10 minutes
use_dns_cache=True,
keepalive_timeout=60,
enable_cleanup_closed=True,
force_close=False, # Keep connections alive
ssl=False # Disable SSL verification for speed (if needed)
)
# Minimal timeout for faster processing
timeout = aiohttp.ClientTimeout(
total=30, # 30 second total timeout
connect=10, # 10 second connect timeout
sock_read=20 # 20 second read timeout
)
async with aiohttp.ClientSession(
connector=connector,
timeout=timeout,
headers={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36',
'Accept': 'image/webp,image/apng,image/*,*/*;q=0.8',
'Accept-Encoding': 'gzip, deflate, br',
'Connection': 'keep-alive'
}
) as session:
async def download_with_semaphore(item):
async with semaphore:
return await download_single_image_async(session, item)
# Process all images at once for maximum parallelism
try:
tasks = [download_with_semaphore(item) for item in all_images_to_process]
results = await asyncio.gather(*tasks, return_exceptions=True)
for result in results:
if isinstance(result, dict) and result is not None:
downloaded_images.append(result)
elif isinstance(result, Exception):
logger.debug(f"Download failed: {result}")
# Progress update
completed = len(downloaded_images)
total = len(all_images_to_process)
logger.info(f"βœ… Downloaded {completed}/{total} images ({completed/total*100:.1f}%)")
except Exception as e:
logger.error(f"Error in async download: {e}")
logger.info(f"βœ… Ultra-fast async download complete: {len(downloaded_images)} images from {len(processed_property_ids)} properties")
return downloaded_images
# Function to generate embeddings for a single image using CLIP
def get_image_embedding_clip(image_path, clip_model, clip_processor):
"""Generate CLIP embedding for a single image with caching"""
# Check cache first
with cache_lock:
if image_path in embedding_cache:
return embedding_cache[image_path]
if clip_model is None or clip_processor is None:
return None
try:
# Load and preprocess image
image = Image.open(image_path).convert('RGB')
# Resize image for faster processing if too large
max_size = 512
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.Resampling.LANCZOS)
inputs = clip_processor(images=image, return_tensors="pt", padding=True)
# Generate embedding
with torch.no_grad():
image_features = clip_model.get_image_features(**inputs)
embedding = image_features.numpy().flatten()
# Cache the result
with cache_lock:
embedding_cache[image_path] = embedding
return embedding
except Exception as e:
logger.error(f"Error processing image {image_path}: {e}")
return None
def process_single_embedding(image_info, clip_model, clip_processor):
"""Process a single image for embedding generation"""
filepath = image_info['filepath']
image_id = image_info['id']
embedding = get_image_embedding_clip(filepath, clip_model, clip_processor)
if embedding is not None:
return image_id, embedding
return None
def process_embeddings_batch(batch, clip_model, clip_processor):
"""Process a batch of images for embedding generation using multiprocessing"""
results = []
for image_info in batch:
result = process_single_embedding(image_info, clip_model, clip_processor)
if result is not None:
results.append(result)
return results
def generate_embeddings_parallel(downloaded_images, clip_model, clip_processor):
"""Generate embeddings with ultra-fast parallel processing using multiple strategies"""
if not downloaded_images or clip_model is None or clip_processor is None:
logger.warning("No images or CLIP model available for embedding generation")
return {}
logger.info("πŸš€ Starting ultra-fast parallel embedding generation...")
# Optimized configuration for maximum speed
max_workers = min(32, multiprocessing.cpu_count() * 4) # Aggressive worker count
batch_size = 50 # Smaller batches for better memory management
logger.info(f"⚑ Using {max_workers} workers with batch size {batch_size}")
image_embeddings = {}
completed_count = 0
total_images = len(downloaded_images)
# Pre-load model to GPU if available for faster inference
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device == 'cuda':
clip_model = clip_model.to(device)
clip_model.eval()
logger.info("πŸ”₯ Model loaded on GPU for maximum speed")
def process_single_image_fast(image_info):
"""Ultra-fast single image processing with GPU acceleration"""
try:
filepath = image_info['filepath']
image_id = image_info['id']
# Check cache first
with cache_lock:
if filepath in embedding_cache:
return image_id, embedding_cache[filepath]
# Load and preprocess image with optimized settings
image = Image.open(filepath).convert('RGB')
# Resize for faster processing (smaller size = faster)
max_size = 224 # Reduced from 512 for speed
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.Resampling.LANCZOS)
# Process with optimized settings
inputs = clip_processor(images=image, return_tensors="pt", padding=True)
# Move to GPU if available
if device == 'cuda':
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate embedding with no_grad for speed
with torch.no_grad():
image_features = clip_model.get_image_features(**inputs)
embedding = image_features.cpu().numpy().flatten()
# Cache the result
with cache_lock:
embedding_cache[filepath] = embedding
return image_id, embedding
except Exception as e:
logger.debug(f"Error processing {filepath}: {e}")
return None
# Use ThreadPoolExecutor with maximum workers
with ThreadPoolExecutor(max_workers=max_workers) as executor:
# Submit all tasks at once for maximum parallelism
future_to_image = {executor.submit(process_single_image_fast, img): img for img in downloaded_images}
# Collect results as they complete with real-time progress
for future in as_completed(future_to_image):
try:
result = future.result(timeout=60) # 1 minute timeout per image
if result is not None:
image_id, embedding = result
image_embeddings[image_id] = embedding
completed_count += 1
# Show progress every 25 images for better UX
if completed_count % 25 == 0:
progress = (completed_count / total_images) * 100
logger.info(f"⚑ Generated embeddings: {completed_count}/{total_images} ({progress:.1f}%)")
except Exception as e:
logger.warning(f"Error processing image: {e}")
continue
logger.info(f"βœ… Ultra-fast embedding generation complete: {len(image_embeddings)} images processed")
return image_embeddings
# Function to search for similar images with optimized performance
def search_similar_images(query_image_path, collection, clip_model, clip_processor, n_results=30):
if clip_model is None or clip_processor is None:
print("CLIP model is not loaded. Cannot perform search.")
return None
# Generate query embedding
query_embedding = get_image_embedding_clip(query_image_path, clip_model, clip_processor)
if query_embedding is None:
print(f"Could not generate embedding for query image: {query_image_path}")
return None
# Perform the search in ChromaDB with optimized settings
try:
results = collection.query(
query_embeddings=[query_embedding.tolist()],
n_results=n_results,
include=['metadatas', 'distances'],
# Add distance threshold for better quality results
where=None # No filtering for now, but can be optimized later
)
return results
except Exception as e:
print(f"Error during ChromaDB search: {e}")
return None
# Function to check if image is property/real estate related using the best model
def is_property_related_image(image_path, threshold=0.4):
"""
Check if the uploaded image is property/real estate related using andupets/real-estate-image-classification
This model is specifically trained for real estate classification with 89.6% accuracy
Using 0.4 threshold for more lenient property detection
"""
try:
if property_classifier is None or property_processor is None:
print("Property classifier not loaded, proceeding with search...")
return True, 0.5, "Classifier unavailable"
# Load and preprocess image
image = Image.open(image_path).convert('RGB')
# Resize for faster processing
max_size = 224
if max(image.size) > max_size:
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
# Process image
inputs = property_processor(images=image, return_tensors="pt")
# Get predictions
with torch.no_grad():
outputs = property_classifier(**inputs)
logits = outputs.logits
probs = torch.softmax(logits, dim=1).detach().numpy()[0]
# Get the highest probability and label
max_prob_idx = probs.argmax()
max_prob = probs[max_prob_idx]
# Get predicted label
if hasattr(property_classifier.config, 'id2label'):
predicted_label = property_classifier.config.id2label[max_prob_idx]
else:
predicted_label = f"class_{max_prob_idx}"
# The andupets/real-estate-image-classification model has these specific classes:
# ['bathroom', 'bedroom', 'dining room', 'house facade', 'kitchen', 'living room', 'sao paulo apartment facade']
# All of these are real estate related
# More lenient logic: if it's predicted as any real estate class, accept it
# Even with lower confidence, since the model is specifically trained for real estate
is_property = max_prob > threshold
# Additional check: if confidence is very low but still a real estate class, be more lenient
if max_prob > 0.3 and predicted_label.lower() in ['bathroom', 'bedroom', 'dining room', 'house facade', 'kitchen', 'living room', 'sao paulo apartment facade']:
is_property = True
print(f"Property classification: {predicted_label} (confidence: {max_prob:.3f}, is_property: {is_property})")
return is_property, float(max_prob), predicted_label
except Exception as e:
print(f"Error in property classification: {e}")
# Fallback: allow the image to proceed if there's an error
return True, 0.5, f"Error: {str(e)}"
# Function to load property classification model with caching
def load_property_classifier():
"""Load a lightweight property classification model with optimized caching"""
global property_classifier, property_processor
try:
print("Loading property classification model...")
# Use the best real estate classification model
model_options = [
"andupets/real-estate-image-classification", # Best specialized real estate model
"microsoft/resnet-50", # Fallback general purpose
"google/vit-base-patch16-224" # Alternative fallback
]
for model_name in model_options:
try:
print(f"Trying to load: {model_name}")
# Use optimized cache settings
cache_dir = '/tmp/huggingface_cache'
os.makedirs(cache_dir, exist_ok=True)
property_processor = AutoImageProcessor.from_pretrained(
model_name,
cache_dir=cache_dir,
local_files_only=False # Allow downloading if not cached
)
property_classifier = AutoModelForImageClassification.from_pretrained(
model_name,
cache_dir=cache_dir,
local_files_only=False
)
# Move to GPU if available for faster inference
if torch.cuda.is_available():
property_classifier = property_classifier.to('cuda')
property_classifier.eval() # Set to evaluation mode for faster inference
print(f"βœ… Property classifier loaded on GPU: {model_name}")
else:
property_classifier.eval() # Set to evaluation mode for faster inference
print(f"βœ… Property classifier loaded on CPU: {model_name}")
return True
except Exception as e:
print(f"Failed to load {model_name}: {e}")
continue
print("⚠️ Warning: Could not load any property classification model")
return False
except Exception as e:
print(f"Error loading property classifier: {e}")
return False
# Initialize Flask app
app = Flask(__name__, template_folder='templates')
app.config['UPLOAD_FOLDER'] = '/tmp/uploads'
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max file size
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
# Global variables for model and collection
clip_model = None
clip_processor = None
property_classifier = None
property_processor = None
collection = None
client = None
downloaded_images = [] # Make this global
initialization_status = "Initializing..."
def initialize_visual_search():
"""Initialize the visual search system with aggressive parallel processing"""
global clip_model, clip_processor, property_classifier, property_processor, collection, client, downloaded_images, initialization_status, initialization_progress
initialization_status = "Fetching image data..."
initialization_progress = 10
logger.info("πŸš€ Initializing visual search system with ultra-fast parallel processing...")
# API URL for property images
api_url = "https://hivepropapi.azurewebsites.net/api/PropertyImage/list"
collection_name = "property_image_embeddings"
# Fetch image data with retry mechanism
logger.info("πŸ“‘ Fetching image data from API...")
image_data = fetch_image_data(api_url)
initialization_progress = 20
if not image_data:
logger.warning("No image data fetched. Using sample data for testing.")
initialization_status = "No image data available"
initialization_progress = 100
return
# Download and process images with aggressive parallel processing
initialization_status = "Downloading property images..."
initialization_progress = 30
logger.info("⬇️ Downloading and processing images with ultra-fast parallel processing...")
# Use async download for maximum performance
try:
# Try async download first
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
downloaded_images = loop.run_until_complete(download_images_async(image_data, num_properties=300))
loop.close()
# Check if async download was successful
if not downloaded_images:
logger.warning("Async download returned no images, falling back to threaded download")
downloaded_images = download_and_process_images(image_data, num_properties=300, max_workers=MAX_DOWNLOAD_WORKERS)
else:
logger.info(f"βœ… Async download successful: {len(downloaded_images)} images downloaded")
initialization_progress = 50
except Exception as e:
logger.warning(f"Async download failed, falling back to threaded download: {e}")
downloaded_images = download_and_process_images(image_data, num_properties=300, max_workers=MAX_DOWNLOAD_WORKERS)
initialization_progress = 50
# Load property classification model first (lightweight)
initialization_status = "Loading property classifier..."
initialization_progress = 60
try:
logger.info("πŸ” Loading property classification model...")
property_classifier_loaded = load_property_classifier()
if property_classifier_loaded:
logger.info("βœ… Property classification model loaded successfully.")
else:
logger.warning("⚠️ Property classification model could not be loaded, will proceed without it.")
except Exception as e:
logger.error(f"Error loading property classifier: {e}")
# Load CLIP model and processor
initialization_status = "Loading AI model..."
initialization_progress = 70
try:
logger.info("🧠 Loading CLIP model and processor...")
# Use cache directory
cache_dir = '/tmp/huggingface_cache'
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=cache_dir)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=cache_dir)
# Move model to GPU if available
if torch.cuda.is_available():
clip_model = clip_model.to('cuda')
logger.info("πŸ”₯ CLIP model loaded on GPU")
else:
logger.info("πŸ’» CLIP model loaded on CPU")
logger.info("βœ… CLIP model and processor loaded successfully.")
initialization_progress = 80
except Exception as e:
logger.error(f"Error loading CLIP model: {e}")
clip_model = None
clip_processor = None
initialization_status = "Failed to load AI model"
initialization_progress = 100
return
# Generate embeddings with aggressive parallel processing
image_embeddings = {}
if clip_model is not None and clip_processor is not None and downloaded_images:
initialization_status = "Generating image embeddings..."
initialization_progress = 85
logger.info("🧠 Generating embeddings with ultra-fast parallel processing...")
# Use the new parallel embedding generation function
image_embeddings = generate_embeddings_parallel(downloaded_images, clip_model, clip_processor)
if not image_embeddings:
logger.warning("No embeddings generated. Skipping database setup.")
initialization_status = "No embeddings generated"
initialization_progress = 100
return
else:
initialization_progress = 90
else:
logger.warning("Skipping embedding generation as the CLIP model could not be loaded or no images downloaded.")
initialization_status = "No embeddings generated"
initialization_progress = 100
return
# Initialize ChromaDB client and collection with optimized settings
initialization_status = "Setting up database..."
initialization_progress = 95
try:
# Disable ChromaDB telemetry and optimize settings
client = chromadb.Client(settings=chromadb.config.Settings(
anonymized_telemetry=False,
allow_reset=True
))
# Try to get existing collection first
try:
collection = client.get_collection(name=collection_name)
logger.info(f"βœ… Using existing collection '{collection_name}' with {collection.count()} items")
initialization_status = "Ready!"
initialization_progress = 100
return # Skip re-processing if collection exists
except:
# Create new collection if it doesn't exist
collection = client.create_collection(name=collection_name)
logger.info(f"βœ… Created new collection '{collection_name}'")
# Prepare data for insertion with optimized batch processing
if image_embeddings:
logger.info("πŸ’Ύ Preparing data for ChromaDB insertion...")
# Prepare data in batches for better performance
batch_size = 1000
total_embeddings = len(image_embeddings)
for i in range(0, total_embeddings, batch_size):
batch_end = min(i + batch_size, total_embeddings)
batch_images = list(downloaded_images)[i:batch_end]
# Filter images that have embeddings
batch_data = []
for image_info in batch_images:
if image_info['id'] in image_embeddings:
batch_data.append({
'id': str(image_info['id']),
'embedding': image_embeddings[image_info['id']].tolist(),
'metadata': {"property_id": image_info['propertyId']}
})
if batch_data:
# Add batch to collection
collection.add(
embeddings=[item['embedding'] for item in batch_data],
ids=[item['id'] for item in batch_data],
metadatas=[item['metadata'] for item in batch_data]
)
logger.info(f"βœ… Added batch {i//batch_size + 1}: {len(batch_data)} embeddings")
logger.info(f"βœ… Successfully added {len(image_embeddings)} embeddings to ChromaDB")
logger.info(f"πŸ“Š Total items in ChromaDB collection: {collection.count()}")
initialization_status = "Ready!"
initialization_progress = 100
else:
logger.warning("No embeddings generated. Collection not populated.")
initialization_status = "No data available"
initialization_progress = 100
except Exception as e:
logger.error(f"Error initializing ChromaDB: {e}")
collection = None
initialization_status = "Database error"
initialization_progress = 100
@app.route('/')
def index():
return render_template('index.html')
@app.route('/search', methods=['POST'])
def search():
"""Search endpoint with graceful handling of initialization"""
if 'file' not in request.files:
return jsonify({"error": "No file part"}), 400
file = request.files['file']
if file.filename == '':
return jsonify({"error": "No selected file"}), 400
# Check if system is ready
if not collection or not clip_model or not clip_processor:
return jsonify({
"error": "System initializing",
"message": "The visual search system is still initializing. Please try again in a few moments.",
"status": initialization_status,
"can_retry": True
}), 503 # Service Unavailable
try:
filename = secure_filename(file.filename)
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(filepath)
# Check if the uploaded image is property-related using the best real estate model
try:
is_property, confidence, predicted_label = is_property_related_image(filepath, threshold=0.4)
print(f"Uploaded image '{filename}' is property-related: {is_property} (Confidence: {confidence:.2f}, Predicted Label: {predicted_label})")
if not is_property:
return jsonify({
"error": "Non-property image detected",
"message": f"The uploaded image appears to be '{predicted_label}' with low confidence ({confidence:.2f}). This doesn't seem to be a real estate property image.",
"details": {
"predicted_label": predicted_label,
"confidence": f"{confidence:.2f}",
"threshold": "0.4",
"suggestion": "Please upload an image of a property (bathroom, bedroom, kitchen, living room, house facade, etc.)"
}
}), 400
except Exception as e:
print(f"Error during property classification: {e}")
# If property classification fails, proceed with search anyway
is_property, confidence, predicted_label = True, 0.5, "Classification failed"
search_results = search_similar_images(filepath, collection, clip_model, clip_processor, n_results=30)
if search_results and search_results['ids'] and search_results['ids'][0]:
results = []
for i in range(len(search_results['ids'][0])):
image_id = search_results['ids'][0][i]
distance = search_results['distances'][0][i]
property_id = search_results['metadatas'][0][i]['property_id']
# Find the corresponding image file path
image_filepath = None
for img_info in downloaded_images:
if str(img_info['id']) == str(image_id):
image_filepath = img_info['filepath']
break
# Convert distance to similarity score (CLIP uses cosine similarity)
# Distance is 1 - cosine_similarity, so similarity = 1 - distance
similarity_score = max(0, (1 - distance) * 100)
results.append({
'image_id': image_id,
'property_id': property_id,
'distance': f"{distance:.4f}",
'similarity_score': f"{similarity_score:.1f}%",
'image_path': f"/property_image/{image_id}" if image_filepath else None
})
return jsonify({
"results": results,
"property_check": {
"is_property": True,
"confidence": f"{confidence:.2f}",
"predicted_label": predicted_label
}
})
else:
return jsonify({"message": "No similar images found."})
except Exception as e:
return jsonify({
"error": "Search failed",
"message": str(e),
"can_retry": True
}), 500
return jsonify({"error": "Visual search system not initialized"}), 500
@app.route('/health')
def health():
"""Simple health check endpoint"""
return jsonify({
"status": "healthy",
"timestamp": time.time(),
"app_running": True,
"uptime_seconds": round(time.time() - initialization_start_time, 1)
})
@app.route('/test')
def test():
"""Test endpoint to verify app is responding"""
return jsonify({
"message": "App is working! πŸš€",
"timestamp": time.time(),
"status": "operational"
})
@app.route('/property_image/<image_id>')
def serve_property_image(image_id):
"""Serve property images from the property_images directory"""
try:
# Find the image file for this image_id
image_filepath = None
for img_info in downloaded_images:
if str(img_info['id']) == str(image_id):
image_filepath = img_info['filepath']
break
if image_filepath and os.path.exists(image_filepath):
return send_file(image_filepath, mimetype='image/jpeg')
else:
return jsonify({"error": "Image not found"}), 404
except Exception as e:
return jsonify({"error": str(e)}), 500
@app.route('/status')
def status():
"""Check if the visual search system is ready - app always responds"""
try:
total_images = collection.count() if collection else 0
# Calculate progress and timing
elapsed_time = time.time() - initialization_start_time
progress_percentage = min(100, initialization_progress)
# Determine if background loading is happening
background_status = "idle"
if total_images > 0 and total_images < 1000: # If we have some images but not full dataset
background_status = "loading"
return jsonify({
"app_status": "running", # App is always running
"model_loaded": clip_model is not None and clip_processor is not None,
"property_classifier_loaded": property_classifier is not None and property_processor is not None,
"collection_ready": collection is not None,
"total_images": total_images,
"background_loading": background_status,
"initialization_status": initialization_status,
"initialization_progress": progress_percentage,
"elapsed_time_seconds": round(elapsed_time, 1),
"can_search": collection is not None and clip_model is not None and clip_processor is not None,
"estimated_time_remaining": "calculating..." if progress_percentage < 100 else "complete"
})
except Exception as e:
# Even if there's an error, return a response
return jsonify({
"app_status": "running",
"error": str(e),
"can_search": False,
"initialization_status": initialization_status
})
def load_additional_properties_background():
"""Load additional properties in the background with parallel processing"""
global downloaded_images, collection, client
try:
logger.info("πŸ”„ Loading additional properties in background with parallel processing...")
# Fetch more image data with retry
api_url = "https://hivepropapi.azurewebsites.net/api/PropertyImage/list"
image_data = fetch_image_data(api_url)
if image_data:
# Download additional properties with aggressive parallel processing
try:
# Try async download first
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
additional_images = loop.run_until_complete(download_images_async(image_data, num_properties=600))
loop.close()
# Check if async download was successful
if not additional_images:
logger.warning("Async download returned no images, falling back to threaded download")
additional_images = download_and_process_images(image_data, num_properties=600, max_workers=MAX_DOWNLOAD_WORKERS)
else:
logger.info(f"Async download successful: {len(additional_images)} images downloaded")
except Exception as e:
logger.warning(f"Async download failed, falling back to threaded download: {e}")
additional_images = download_and_process_images(image_data, num_properties=600, max_workers=MAX_DOWNLOAD_WORKERS)
# Filter out duplicates
existing_ids = {img['id'] for img in downloaded_images}
new_images = [img for img in additional_images if img['id'] not in existing_ids]
if new_images:
downloaded_images.extend(new_images)
logger.info(f"βœ… Added {len(new_images)} additional images in background")
# Generate embeddings for new images with parallel processing
if clip_model is not None and clip_processor is not None:
logger.info(f"Generating embeddings for {len(new_images)} new images...")
new_embeddings = generate_embeddings_parallel(new_images, clip_model, clip_processor)
# Add new embeddings to ChromaDB
if new_embeddings and collection:
batch_data = []
for img in new_images:
if img['id'] in new_embeddings:
batch_data.append({
'id': str(img['id']),
'embedding': new_embeddings[img['id']].tolist(),
'metadata': {"property_id": img['propertyId']}
})
if batch_data:
collection.add(
embeddings=[item['embedding'] for item in batch_data],
ids=[item['id'] for item in batch_data],
metadatas=[item['metadata'] for item in batch_data]
)
logger.info(f"βœ… Added {len(batch_data)} new embeddings to ChromaDB")
logger.info(f"Total items in collection: {collection.count()}")
except Exception as e:
logger.error(f"⚠️ Background property loading failed: {e}")
def automated_daily_refresh():
"""Automated 24-hour refresh that runs in background without affecting app performance"""
global downloaded_images, collection, client
# Initialize background_refresh_running if not defined
if 'background_refresh_running' not in globals():
global background_refresh_running
background_refresh_running = False
if background_refresh_running:
logger.info("πŸ”„ Background refresh already running, skipping...")
return
background_refresh_running = True
logger.info("πŸ”„ Starting automated 24-hour background refresh...")
try:
# Step 1: Fetch fresh data from API
logger.info("πŸ“‘ Fetching fresh property data from API...")
api_url = "https://hivepropapi.azurewebsites.net/api/PropertyImage/list"
image_data = fetch_image_data(api_url)
if not image_data:
logger.warning("❌ No fresh data available for refresh")
background_refresh_running = False
return
# Step 2: Download new images with parallel processing
logger.info("⬇️ Downloading new images with parallel processing...")
try:
# Try async download first for maximum performance
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
fresh_images = loop.run_until_complete(download_images_async(image_data, num_properties=600))
loop.close()
if not fresh_images:
logger.warning("Async download failed, falling back to threaded download")
fresh_images = download_and_process_images(image_data, num_properties=600, max_workers=MAX_DOWNLOAD_WORKERS)
except Exception as e:
logger.warning(f"Async download failed, falling back to threaded download: {e}")
fresh_images = download_and_process_images(image_data, num_properties=600, max_workers=MAX_DOWNLOAD_WORKERS)
if not fresh_images:
logger.error("❌ Failed to download any images during refresh")
background_refresh_running = False
return
# Step 3: Identify new images (not already in database)
existing_ids = {img['id'] for img in downloaded_images}
new_images = [img for img in fresh_images if img['id'] not in existing_ids]
if not new_images:
logger.info("βœ… No new images found during refresh")
background_refresh_running = False
return
logger.info(f"πŸ†• Found {len(new_images)} new images to process")
# Step 4: Generate embeddings for new images
if clip_model is not None and clip_processor is not None:
logger.info(f"🧠 Generating embeddings for {len(new_images)} new images...")
new_embeddings = generate_embeddings_parallel(new_images, clip_model, clip_processor)
if not new_embeddings:
logger.warning("❌ Failed to generate embeddings for new images")
background_refresh_running = False
return
# Step 5: Update database with new embeddings
if collection:
logger.info("πŸ’Ύ Updating database with new embeddings...")
batch_data = []
for img in new_images:
if img['id'] in new_embeddings:
batch_data.append({
'id': str(img['id']),
'embedding': new_embeddings[img['id']].tolist(),
'metadata': {"property_id": img['propertyId']}
})
if batch_data:
# Add new embeddings to ChromaDB
collection.add(
embeddings=[item['embedding'] for item in batch_data],
ids=[item['id'] for item in batch_data],
metadatas=[item['metadata'] for item in batch_data]
)
# Update global downloaded_images list
downloaded_images.extend(new_images)
logger.info(f"βœ… Successfully added {len(batch_data)} new embeddings to database")
logger.info(f"πŸ“Š Total items in collection: {collection.count()}")
logger.info(f"πŸ“Š Total images in memory: {len(downloaded_images)}")
else:
logger.warning("❌ No valid embeddings to add to database")
else:
logger.error("❌ Database collection not available")
else:
logger.error("❌ CLIP model not available for embedding generation")
logger.info("βœ… Automated 24-hour refresh completed successfully!")
except Exception as e:
logger.error(f"❌ Automated refresh failed: {e}")
finally:
background_refresh_running = False
def start_automated_refresh_scheduler():
"""Start the automated 24-hour refresh scheduler"""
logger.info("⏰ Setting up automated 24-hour refresh scheduler...")
# Schedule daily refresh at 2:00 AM (when traffic is low)
schedule.every().day.at("02:00").do(automated_daily_refresh)
# Also schedule a refresh every 24 hours from now
schedule.every(24).hours.do(automated_daily_refresh)
logger.info("βœ… Automated refresh scheduler started - will refresh every 24 hours at 2:00 AM")
# Run the scheduler in a separate thread
def run_scheduler():
while True:
schedule.run_pending()
time.sleep(60) # Check every minute
scheduler_thread = threading.Thread(target=run_scheduler, daemon=True)
scheduler_thread.start()
logger.info("πŸ”„ Background scheduler thread started")
if __name__ == '__main__':
# Start Flask app immediately without blocking
port = int(os.environ.get('PORT', 7860))
# Initialize visual search in background thread
def background_init():
initialize_visual_search()
init_thread = threading.Thread(target=background_init)
init_thread.daemon = True
init_thread.start()
# Load additional properties in background after 30 seconds
def start_background_loading():
time.sleep(30) # Wait for initial startup
load_additional_properties_background()
background_thread = threading.Thread(target=start_background_loading)
background_thread.daemon = True
background_thread.start()
# Start automated 24-hour refresh scheduler
def start_automated_scheduler():
time.sleep(60) # Wait 1 minute for initial setup
start_automated_refresh_scheduler()
scheduler_startup_thread = threading.Thread(target=start_automated_scheduler)
scheduler_startup_thread.daemon = True
scheduler_startup_thread.start()
# Run Flask app immediately
app.run(host='0.0.0.0', port=port, debug=False, threaded=True)