Hnabil commited on
Commit
2f99922
·
1 Parent(s): b82972a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -42,9 +42,9 @@ def get_uniform_grid(n_samples):
42
 
43
 
44
  DATA_MAPPING = {
45
- 'circles': get_circles,
46
- 's-curve': get_s_curve,
47
- 'uniform grid': get_uniform_grid,
48
  }
49
 
50
 
@@ -84,7 +84,7 @@ t-Stochastic Neighborhood Embedding ([t-SNE](https://scikit-learn.org/stable/mod
84
 
85
  One of the key parameters in t-SNE is perplexity, which controls the number of nearest neighbors used to represent each data point in the low-dimensional space.
86
 
87
- In this illustration, we explore the impact of various perplexity values on t-SNE visualizations using three commonly used datasets: concentric circles, S-curve and Uniform Grid.
88
 
89
  By comparing the resulting visualizations, we demonstrate how changing the perplexity value affects the shape of the visualization.
90
 
 
42
 
43
 
44
  DATA_MAPPING = {
45
+ 'Circles': get_circles,
46
+ 'S-curve': get_s_curve,
47
+ 'Uniform Grid': get_uniform_grid,
48
  }
49
 
50
 
 
84
 
85
  One of the key parameters in t-SNE is perplexity, which controls the number of nearest neighbors used to represent each data point in the low-dimensional space.
86
 
87
+ In this illustration, we explore the impact of various perplexity values on t-SNE visualizations using three commonly used datasets: Concentric Circles, S-curve and Uniform Grid.
88
 
89
  By comparing the resulting visualizations, we demonstrate how changing the perplexity value affects the shape of the visualization.
90