|
import gradio as gr |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import warnings |
|
|
|
from functools import partial |
|
from sklearn.datasets import make_blobs |
|
from sklearn.svm import LinearSVC |
|
from sklearn.inspection import DecisionBoundaryDisplay |
|
from sklearn.exceptions import ConvergenceWarning |
|
|
|
def train_model(C, n_samples): |
|
default_base = {"n_samples": 20} |
|
|
|
|
|
params = default_base.copy() |
|
params.update({"n_samples":n_samples}) |
|
|
|
X, y = make_blobs(n_samples=params["n_samples"], centers=2, random_state=0) |
|
|
|
fig, ax = plt.subplots() |
|
|
|
|
|
with warnings.catch_warnings(): |
|
warnings.filterwarnings("ignore", category=ConvergenceWarning) |
|
|
|
clf = LinearSVC(C=C, loss="hinge", random_state=42).fit(X, y) |
|
|
|
decision_function = clf.decision_function(X) |
|
|
|
|
|
|
|
|
|
support_vector_indices = np.where(np.abs(decision_function) <= 1 + 1e-15)[0] |
|
support_vectors = X[support_vector_indices] |
|
|
|
ax.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired) |
|
DecisionBoundaryDisplay.from_estimator( |
|
clf, |
|
X, |
|
ax=ax, |
|
grid_resolution=50, |
|
plot_method="contour", |
|
colors="k", |
|
levels=[-1, 0, 1], |
|
alpha=0.5, |
|
linestyles=["--", "-", "--"], |
|
) |
|
ax.scatter( |
|
support_vectors[:, 0], |
|
support_vectors[:, 1], |
|
s=100, |
|
linewidth=1, |
|
facecolors="none", |
|
edgecolors="k", |
|
) |
|
ax.set_title("C=" + str(C)) |
|
|
|
return fig |
|
|
|
def iter_grid(n_rows, n_cols): |
|
|
|
for _ in range(n_rows): |
|
with gr.Row(): |
|
for _ in range(n_cols): |
|
with gr.Column(): |
|
yield |
|
|
|
title = "π Linear Support Vector Classification" |
|
with gr.Blocks(title=title) as demo: |
|
gr.Markdown(f"## {title}") |
|
gr.Markdown("Unlike SVC (based on LIBSVM), LinearSVC " |
|
+ "(based on LIBLINEAR) does not provide the" |
|
+ "support vectors. This example demonstrates" |
|
+ "how to obtain the support vectors in LinearSVC.") |
|
|
|
|
|
input_models = ["Bisecting K-Means", "K-Means"] |
|
|
|
n_samples = gr.Slider(minimum=20, maximum=100, step=5, |
|
label = "Number of Samples") |
|
|
|
input_model = "LinearSVC" |
|
|
|
for _, C in zip(iter_grid(1,2), [1, 100]): |
|
plot = gr.Plot(label=input_model) |
|
|
|
fn = partial(train_model, C) |
|
n_samples.change(fn=fn, inputs=[n_samples], outputs=plot) |
|
|
|
|
|
demo.launch() |
|
|