jucamohedano's picture
Add application and requirements.txt
0d44b47
raw
history blame
3.01 kB
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import warnings
from functools import partial
from sklearn.datasets import make_blobs
from sklearn.svm import LinearSVC
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.exceptions import ConvergenceWarning
def train_model(C, n_samples):
default_base = {"n_samples": 20}
# Algorithms to compare
params = default_base.copy()
params.update({"n_samples":n_samples})
X, y = make_blobs(n_samples=params["n_samples"], centers=2, random_state=0)
fig, ax = plt.subplots()
# catch warnings related to convergence
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=ConvergenceWarning)
clf = LinearSVC(C=C, loss="hinge", random_state=42).fit(X, y)
# obtain the support vectors through the decision function
decision_function = clf.decision_function(X)
# we can also calculate the decision function manually
# decision_function = np.dot(X, clf.coef_[0]) + clf.intercept_[0]
# The support vectors are the samples that lie within the margin
# boundaries, whose size is conventionally constrained to 1
support_vector_indices = np.where(np.abs(decision_function) <= 1 + 1e-15)[0]
support_vectors = X[support_vector_indices]
ax.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)
DecisionBoundaryDisplay.from_estimator(
clf,
X,
ax=ax,
grid_resolution=50,
plot_method="contour",
colors="k",
levels=[-1, 0, 1],
alpha=0.5,
linestyles=["--", "-", "--"],
)
ax.scatter(
support_vectors[:, 0],
support_vectors[:, 1],
s=100,
linewidth=1,
facecolors="none",
edgecolors="k",
)
ax.set_title("C=" + str(C))
return fig
def iter_grid(n_rows, n_cols):
# create a grid using gradio Block
for _ in range(n_rows):
with gr.Row():
for _ in range(n_cols):
with gr.Column():
yield
title = "πŸ“ˆ Linear Support Vector Classification"
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown("Unlike SVC (based on LIBSVM), LinearSVC "
+ "(based on LIBLINEAR) does not provide the"
+ "support vectors. This example demonstrates"
+ "how to obtain the support vectors in LinearSVC.")
input_models = ["Bisecting K-Means", "K-Means"]
n_samples = gr.Slider(minimum=20, maximum=100, step=5,
label = "Number of Samples")
input_model = "LinearSVC"
# Regularization parameter C included in loop
for _, C in zip(iter_grid(1,2), [1, 100]):
plot = gr.Plot(label=input_model)
fn = partial(train_model, C)
n_samples.change(fn=fn, inputs=[n_samples], outputs=plot)
demo.launch()