import gradio as gr import numpy as np from sklearn.ensemble import AdaBoostRegressor from sklearn.tree import DecisionTreeRegressor import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import seaborn as sns def train_estimators(max_depth,n_estimators): rng = np.random.RandomState(1) X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) regr_1 = DecisionTreeRegressor(max_depth=4) regr_2 = AdaBoostRegressor( DecisionTreeRegressor(max_depth=max_depth), n_estimators=n_estimators, random_state=rng ) regr_1.fit(X, y) regr_2.fit(X, y) y_1 = regr_1.predict(X) y_2 = regr_2.predict(X) colors = sns.color_palette("colorblind") fig, ax = plt.subplots() ax.scatter(X, y, color=colors[0], label="training samples") ax.plot(X, y_1, color=colors[1], label="Decision tree (max_depth=4)", linewidth=2) ax.plot(X, y_2, color=colors[2], label=f"Adaboost (max_depth={max_depth}, estimators={n_estimators})", linewidth=2) ax.set_xlabel("data") ax.set_ylabel("target") ax.legend() return fig title = "Decision Tree Regression with AdaBoost" with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}") gr.Markdown("This app demonstrates bosting of decision tree regressor using Adaboost") max_depth = gr.Slider(minimum=1, maximum=50, step=1, label = "Maximum Depth") n_estimators = gr.Slider(minimum=1, maximum=300, step=1, label = "Number of Estimators") plot = gr.Plot(label=title) n_estimators.change(fn=train_estimators, inputs=[max_depth,n_estimators], outputs=[plot]) max_depth.change(fn=train_estimators, inputs=[max_depth,n_estimators], outputs=[plot]) demo.launch()