|
import gradio as gr |
|
import numpy as np |
|
from sklearn.ensemble import AdaBoostRegressor |
|
from sklearn.tree import DecisionTreeRegressor |
|
import matplotlib |
|
matplotlib.use("Agg") |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
|
|
def train_estimators(max_depth,n_estimators): |
|
rng = np.random.RandomState(1) |
|
X = np.linspace(0, 6, 100)[:, np.newaxis] |
|
y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) |
|
|
|
regr_1 = DecisionTreeRegressor(max_depth=4) |
|
regr_2 = AdaBoostRegressor( |
|
DecisionTreeRegressor(max_depth=4), n_estimators=n_estimators, random_state=rng |
|
) |
|
regr_1.fit(X, y) |
|
regr_2.fit(X, y) |
|
y_1 = regr_1.predict(X) |
|
y_2 = regr_2.predict(X) |
|
colors = sns.color_palette("colorblind") |
|
|
|
fig, ax = plt.subplots() |
|
ax.scatter(X, y, color=colors[0], label="training samples") |
|
ax.plot(X, y_1, color=colors[1], label=f"Decision tree (estimators=1)", linewidth=2) |
|
ax.plot(X, y_2, color=colors[2], label=f"Adaboost (estimators={n_estimators})", linewidth=2) |
|
ax.set_xlabel("data") |
|
ax.set_ylabel("target") |
|
ax.legend() |
|
return fig |
|
|
|
title = "Decision Tree Regression with AdaBoost" |
|
with gr.Blocks(title=title) as demo: |
|
gr.Markdown(f"## {title}") |
|
gr.Markdown(""" |
|
This app demonstrates boosting of decision tree regressor using Adaboost. Boosting algorithms work by combining multiple models (weak learners) to reach the final output (strong learners). |
|
A single decision tree trained on randomly generated regression dataset is used as baseline and compared with a boosted decision tree trained on the same dataset. |
|
The outputs of each model are visualize together with actual data in the plot |
|
The number of estimator used in boosted decision tree can be adjusted and the effect of this adjusment can be seen in the resulting plot. |
|
This app is developed based on [scikit-learn example](https://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_regression.html#sphx-glr-auto-examples-ensemble-plot-adaboost-regression-py) |
|
""") |
|
|
|
n_estimators = gr.Slider(minimum=2, maximum=300, step=1, label = "Number of Estimators") |
|
|
|
plot = gr.Plot(label=title) |
|
n_estimators.change(fn=train_estimators, inputs=n_estimators, outputs=[plot]) |
|
|
|
demo.launch() |
|
|
|
|