""" Demo is based on https://scikit-learn.org/stable/auto_examples/applications/plot_stock_market.html """ import sys import numpy as np import pandas as pd symbol_dict = { "TOT": "Total", "XOM": "Exxon", "CVX": "Chevron", "COP": "ConocoPhillips", "VLO": "Valero Energy", "MSFT": "Microsoft", "IBM": "IBM", "TWX": "Time Warner", "CMCSA": "Comcast", "CVC": "Cablevision", "YHOO": "Yahoo", "DELL": "Dell", "HPQ": "HP", "AMZN": "Amazon", "TM": "Toyota", "CAJ": "Canon", "SNE": "Sony", "F": "Ford", "HMC": "Honda", "NAV": "Navistar", "NOC": "Northrop Grumman", "BA": "Boeing", "KO": "Coca Cola", "MMM": "3M", "MCD": "McDonald's", "PEP": "Pepsi", "K": "Kellogg", "UN": "Unilever", "MAR": "Marriott", "PG": "Procter Gamble", "CL": "Colgate-Palmolive", "GE": "General Electrics", "WFC": "Wells Fargo", "JPM": "JPMorgan Chase", "AIG": "AIG", "AXP": "American express", "BAC": "Bank of America", "GS": "Goldman Sachs", "AAPL": "Apple", "SAP": "SAP", "CSCO": "Cisco", "TXN": "Texas Instruments", "XRX": "Xerox", "WMT": "Wal-Mart", "HD": "Home Depot", "GSK": "GlaxoSmithKline", "PFE": "Pfizer", "SNY": "Sanofi-Aventis", "NVS": "Novartis", "KMB": "Kimberly-Clark", "R": "Ryder", "GD": "General Dynamics", "RTN": "Raytheon", "CVS": "CVS", "CAT": "Caterpillar", "DD": "DuPont de Nemours", } symbols, names = np.array(sorted(symbol_dict.items())).T quotes = [] for symbol in symbols: print("Fetching quote history for %r" % symbol, file=sys.stderr) url = ( "https://raw.githubusercontent.com/scikit-learn/examples-data/" "master/financial-data/{}.csv" ) quotes.append(pd.read_csv(url.format(symbol))) close_prices = np.vstack([q["close"] for q in quotes]) open_prices = np.vstack([q["open"] for q in quotes]) # The daily variations of the quotes are what carry the most information variation = close_prices - open_prices from sklearn import covariance alphas = np.logspace(-1.5, 1, num=10) edge_model = covariance.GraphicalLassoCV(alphas=alphas) # standardize the time series: using correlations rather than covariance # former is more efficient for structurerelations rather than covariance # former is more efficient for structure recovery X = variation.copy().T X /= X.std(axis=0) edge_model.fit(X) from sklearn import cluster _, labels = cluster.affinity_propagation(edge_model.covariance_, random_state=0) n_labels = labels.max() import gradio as gr title = " 📈 Visualizing the stock market structure 📈" with gr.Blocks(title=title) as demo: gr.Markdown(f"# {title}") gr.Markdown(" Data is of 56 stocks between the period of 2003 - 2008
") gr.Markdown(" Stocks the move in together with each other are grouped together in a cluster
") gr.Markdown(" **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/applications/plot_stock_market.html)**") for i in range(n_labels + 1): gr.Markdown( f"Cluster {i + 1}: {', '.join(names[labels == i])}") gr.Markdown( f"## In progress") demo.launch()