eswardivi commited on
Commit
070602d
·
1 Parent(s): e95e984

Huge Bump to Codebase added more features

Browse files
Files changed (1) hide show
  1. app.py +54 -20
app.py CHANGED
@@ -10,19 +10,24 @@ np.random.seed(0)
10
 
11
 
12
  def plot_it(X_train_x, X_train_y, Y_train_x, Y_train_y, X_test_x, X_test_y, alpha):
 
13
  X_train = np.array([[X_train_x, X_train_y]]).T
14
  y_train = [Y_train_x, Y_train_y]
15
  X_test = np.array([[X_test_x, X_test_y]]).T
16
 
 
17
  classifiers = dict(
18
  ols=linear_model.LinearRegression(), ridge=linear_model.Ridge(alpha=alpha)
19
  )
20
 
21
- fig, axs = plt.subplots(ncols=len(classifiers), figsize=(8, 4))
 
22
 
 
23
  for i, (name, clf) in enumerate(classifiers.items()):
24
  ax = axs[i]
25
 
 
26
  for _ in range(6):
27
  this_X = 0.1 * np.random.normal(size=(2, 1)) + X_train
28
  clf.fit(this_X, y_train)
@@ -30,13 +35,31 @@ def plot_it(X_train_x, X_train_y, Y_train_x, Y_train_y, X_test_x, X_test_y, alph
30
  ax.plot(X_test, clf.predict(X_test), color="gray")
31
  ax.scatter(this_X, y_train, s=3, c="gray", marker="o", zorder=10)
32
 
 
33
  clf.fit(X_train, y_train)
 
 
34
  ax.plot(X_test, clf.predict(X_test), linewidth=2, color="blue")
35
  ax.scatter(X_train, y_train, s=30, c="red", marker="+", zorder=10)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  ax.set_title(name)
38
- ax.set_xlim(0, 2)
39
- ax.set_ylim((0, 1.6))
40
  ax.set_xlabel("X")
41
  ax.set_ylabel("y")
42
 
@@ -44,45 +67,56 @@ def plot_it(X_train_x, X_train_y, Y_train_x, Y_train_y, X_test_x, X_test_y, alph
44
 
45
 
46
  with gr.Blocks() as demo:
 
47
  gr.Markdown("# Ordinary Least Squares and Ridge Regression Variance")
48
  gr.Markdown(
49
- "This interactive demo is based on the [Ordinary Least Squares and Ridge Regression Variance](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols_ridge_variance.html) shows how to use linear regression with OLS and ridge regression, and compare the variance of the coefficients. It generates a synthetic dataset with a small number of features and a large number of samples, fits both models to the data, and plots the variance of the coefficients for each model. It demonstrates that ridge regression can reduce the variance of coefficients when there is multicollinearity between the features, making it a useful tool in certain regression scenarios."
50
  )
51
 
52
- gr.Markdown("Select Training points For X_train and Y_train")
53
-
 
 
 
54
  with gr.Row():
55
  with gr.Column():
 
56
  X_train_x = gr.Slider(
57
- value=0.5, minimum=0, maximum=100, step=0.1, label="X_train_x"
58
  )
59
  X_train_y = gr.Slider(
60
- value=1, minimum=0, maximum=100, step=0.1, label="X_train_y"
61
  )
62
  with gr.Column():
 
63
  Y_train_x = gr.Slider(
64
- value=0.5, minimum=0, maximum=100, step=0.1, label="Y_train_x"
65
  )
66
  Y_train_y = gr.Slider(
67
- value=1, minimum=0, maximum=100, step=0.1, label="Y_train_y"
68
  )
69
- gr.Markdown("X_test")
 
 
 
 
 
70
  with gr.Row():
71
- X_test_x = gr.Slider(
72
- value=0, minimum=0, maximum=100, step=0.1, label="X_test_x"
73
- )
74
- X_test_y = gr.Slider(
75
- value=2, minimum=0, maximum=100, step=0.1, label="X_test_y"
76
- )
77
 
78
- gr.Markdown("Select Classifier parameters")
79
- alpha = gr.Slider(value=0.5, minimum=0, maximum=100, step=0.1, label="alpha")
 
 
 
 
80
 
 
81
  gr.Button("Plot").click(
82
  plot_it,
83
  inputs=[X_train_x, X_train_y, Y_train_x, Y_train_y, X_test_x, X_test_y, alpha],
84
  outputs=gr.Plot(),
85
  )
86
 
87
-
88
  demo.launch()
 
10
 
11
 
12
  def plot_it(X_train_x, X_train_y, Y_train_x, Y_train_y, X_test_x, X_test_y, alpha):
13
+ # Prepare the training and test data
14
  X_train = np.array([[X_train_x, X_train_y]]).T
15
  y_train = [Y_train_x, Y_train_y]
16
  X_test = np.array([[X_test_x, X_test_y]]).T
17
 
18
+ # Define the classifiers for Ordinary Least Squares (OLS) and Ridge Regression
19
  classifiers = dict(
20
  ols=linear_model.LinearRegression(), ridge=linear_model.Ridge(alpha=alpha)
21
  )
22
 
23
+ # Create a figure with subplots for each classifier
24
+ fig, axs = plt.subplots(ncols=len(classifiers), figsize=(8, 6))
25
 
26
+ # Iterate over the classifiers and plot the results
27
  for i, (name, clf) in enumerate(classifiers.items()):
28
  ax = axs[i]
29
 
30
+ # Generate and fit the data multiple times for visualization purposes
31
  for _ in range(6):
32
  this_X = 0.1 * np.random.normal(size=(2, 1)) + X_train
33
  clf.fit(this_X, y_train)
 
35
  ax.plot(X_test, clf.predict(X_test), color="gray")
36
  ax.scatter(this_X, y_train, s=3, c="gray", marker="o", zorder=10)
37
 
38
+ # Fit the classifier to the original training data
39
  clf.fit(X_train, y_train)
40
+
41
+ # Plot the fitted line and the training data points
42
  ax.plot(X_test, clf.predict(X_test), linewidth=2, color="blue")
43
  ax.scatter(X_train, y_train, s=30, c="red", marker="+", zorder=10)
44
+ # Get the regression coefficients
45
+ coef = clf.coef_
46
+ intercept = clf.intercept_
47
+
48
+ # Create a text box with the regression coefficients
49
+ text_box = f"Intercept: {intercept:.2f}\nCoefficient: {coef[0]:.2f}"
50
+
51
+ # Add the text box to the plot
52
+ ax.text(
53
+ 0.05,
54
+ 0.95,
55
+ text_box,
56
+ transform=ax.transAxes,
57
+ fontsize=10,
58
+ verticalalignment="top",
59
+ bbox=dict(facecolor="white", alpha=0.8),
60
+ )
61
 
62
  ax.set_title(name)
 
 
63
  ax.set_xlabel("X")
64
  ax.set_ylabel("y")
65
 
 
67
 
68
 
69
  with gr.Blocks() as demo:
70
+ # Introduction and explanation of the demo
71
  gr.Markdown("# Ordinary Least Squares and Ridge Regression Variance")
72
  gr.Markdown(
73
+ "This interactive demo is based on the [Ordinary Least Squares and Ridge Regression Variance](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols_ridge_variance.html). It illustrates the concepts of Ordinary Least Squares (OLS) and Ridge Regression variance, demonstrates how to use linear regression with OLS and ridge regression, and compares the variance of the coefficients. You will have the opportunity to create your own data points, generate a synthetic dataset with a small number of features, fit both models to the data, and observe the variance of the coefficients for each model. This demo showcases how ridge regression can reduce the variance of coefficients when there is multicollinearity between the features, making it a valuable tool in certain regression scenarios."
74
  )
75
 
76
+ # Explanation of selecting training points for X_train and Y_train
77
+ gr.Markdown("## Select Training Points for X_train and Y_train")
78
+ gr.Markdown(
79
+ "In regression tasks, we split the available data into a training set and a test set. The training set is used to train the regression model, and the test set is used to evaluate its performance. Here, you can select the coordinates of the training points that form the training set."
80
+ )
81
  with gr.Row():
82
  with gr.Column():
83
+ gr.Markdown("X_train consists of training points (X_train_x, X_train_y)")
84
  X_train_x = gr.Slider(
85
+ value=0.5, minimum=0, maximum=3, step=0.1, label="X_train_x"
86
  )
87
  X_train_y = gr.Slider(
88
+ value=1, minimum=0, maximum=3, step=0.1, label="X_train_y"
89
  )
90
  with gr.Column():
91
+ gr.Markdown("Y_train consists of training points (Y_train_x, Y_train_y)")
92
  Y_train_x = gr.Slider(
93
+ value=0.5, minimum=0, maximum=3, step=0.1, label="Y_train_x"
94
  )
95
  Y_train_y = gr.Slider(
96
+ value=1, minimum=0, maximum=3, step=0.1, label="Y_train_y"
97
  )
98
+
99
+ # Explanation of selecting X_test
100
+ gr.Markdown("## Select Test Point (X_test)")
101
+ gr.Markdown(
102
+ "To evaluate the trained regression model, we need a test point that is not part of the training set. Here, you can select the coordinates of the test point, which will be used to predict the target value based on the learned regression function."
103
+ )
104
  with gr.Row():
105
+ X_test_x = gr.Slider(value=0, minimum=0, maximum=3, step=0.1, label="X_test_x")
106
+ X_test_y = gr.Slider(value=2, minimum=0, maximum=3, step=0.1, label="X_test_y")
 
 
 
 
107
 
108
+ # Explanation of selecting classifier parameters
109
+ gr.Markdown("## Select Classifier Parameters")
110
+ gr.Markdown(
111
+ "In this demo, we compare two regression models: Ordinary Least Squares (OLS) and Ridge Regression. You can adjust the 'alpha' parameter for the Ridge Regression model, which controls the amount of regularization. Higher values of alpha correspond to stronger regularization, reducing the variance of the coefficients."
112
+ )
113
+ alpha = gr.Slider(value=0.5, minimum=0, maximum=3, step=0.1, label="alpha")
114
 
115
+ # Button to trigger the plot
116
  gr.Button("Plot").click(
117
  plot_it,
118
  inputs=[X_train_x, X_train_y, Y_train_x, Y_train_y, X_test_x, X_test_y, alpha],
119
  outputs=gr.Plot(),
120
  )
121
 
 
122
  demo.launch()