import os import pandas as pd from sklearn.ensemble import IsolationForest import numpy as np from sklearn.model_selection import train_test_split import gradio as gr #Data preparation n_samples, n_outliers = 120, 40 rng = np.random.RandomState(0) covariance = np.array([[0.5, -0.1], [0.7, 0.4]]) cluster_1 = 0.4 * rng.randn(n_samples, 2) @ covariance + np.array([2, 2]) # general deformed cluster cluster_2 = 0.3 * rng.randn(n_samples, 2) + np.array([-2, -2]) # spherical cluster outliers = rng.uniform(low=-4, high=4, size=(n_outliers, 2)) X = np.concatenate([cluster_1, cluster_2, outliers]) #120+120+40 = 280 with 2D y = np.concatenate( [np.ones((2 * n_samples), dtype=int), -np.ones((n_outliers), dtype=int)] ) #Visualize the data as a scatter plot # def predict_survival(passenger_class, is_male, age, company, fare, embark_point): # if passenger_class is None or embark_point is None: # return None # df = pd.DataFrame.from_dict( # { # "Pclass": [passenger_class + 1], # "Sex": [0 if is_male else 1], # "Age": [age], # "Fare": [fare], # "Embarked": [embark_point + 1], # "Company": [ # (1 if "Sibling" in company else 0) + (2 if "Child" in company else 0) # ] # } # ) # df = encode_age(df) # df = encode_fare(df) # pred = clf.predict_proba(df)[0] # return {"Perishes": float(pred[0]), "Survives": float(pred[1])} # demo = gr.Interface( # predict_survival, # [ # gr.Dropdown(["first", "second", "third"], type="index"), # "checkbox", # gr.Slider(0, 80, value=25), # gr.CheckboxGroup(["Sibling", "Child"], label="Travelling with (select all)"), # gr.Number(value=20), # gr.Radio(["S", "C", "Q"], type="index"), # ], # "label", # examples=[ # ["first", True, 30, [], 50, "S"], # ["second", False, 40, ["Sibling", "Child"], 10, "Q"], # ["third", True, 30, ["Child"], 20, "S"], # ], # interpretation="default", # live=True, # ) # if __name__ == "__main__": # demo.launch()