import os import pandas as pd from sklearn.ensemble import IsolationForest import numpy as np from sklearn.model_selection import train_test_split import gradio as gr import matplotlib.pyplot as plt from skops import hub_utils import pickle import time #Data preparation n_samples, n_outliers = 120, 40 rng = np.random.RandomState(0) covariance = np.array([[0.5, -0.1], [0.7, 0.4]]) cluster_1 = 0.4 * rng.randn(n_samples, 2) @ covariance + np.array([2, 2]) # general deformed cluster cluster_2 = 0.3 * rng.randn(n_samples, 2) + np.array([-2, -2]) # spherical cluster outliers = rng.uniform(low=-4, high=4, size=(n_outliers, 2)) X = np.concatenate([cluster_1, cluster_2, outliers]) #120+120+40 = 280 with 2D y = np.concatenate( [np.ones((2 * n_samples), dtype=int), -np.ones((n_outliers), dtype=int)] ) def load_hf_model_hub(): ''' Load the directory containing pretrained model and files from the model repository ''' repo_id="sklearn-docs/anomaly-detection" download_repo = "downloaded-model" hub_utils.download(repo_id=repo_id, dst=download_repo) time.sleep(2) loaded_model = pickle.load(open('./downloaded-model/isolation_forest.pkl', 'rb')) return loaded_model #Visualize the data as a scatter plot def visualize_input_data(): fig = plt.figure(1, facecolor="w", figsize=(5, 5)) scatter = plt.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k") handles, labels = scatter.legend_elements() plt.axis("square") plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class") plt.title("Gaussian inliers with \nuniformly distributed outliers") # plt.show() # plt.clear() return fig title = " An example using IsolationForest for anomaly detection." description1 = "The isolation forest is an Ensemble of Isolation trees and it isolates the datapoints using recursive random partitioning." description2 = "In case of outliers the number of splits required is greater than those required for inliers." description3 = "We will use the toy dataset as given in the scikit-learn page for Isolation Forest." with gr.Blocks(title=title) as demo: gr.Markdown(f"# {title}") gr.Markdown(f"# {description1}") gr.Markdown(f"# {description2}") gr.Markdown(f"# {description3}") gr.Markdown(" **https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py**") loaded_model = load_hf_model_hub() with gr.Tab("Visualize Input dataset"): btn = gr.Button(value="Visualize input dataset") btn.click(visualize_input_data, outputs= gr.Plot(label='Visualizing input dataset') ) with gr.Tab("Plot Decision Boundary"): image_decision = gr.Image('./downloaded-model/decision_boundary.png') with gr.Tab("Plot Path"): image_path = gr.Image('./downloaded-model/plot_path.png') gr.Markdown( f"## Success") demo.launch()