import gradio as gr import numpy as np import matplotlib import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix # This line ensures Matplotlib doesn't try to open windows in certain environments: matplotlib.use('Agg') # Load the Iris dataset iris = load_iris() X, y = iris.data, iris.target feature_names = iris.feature_names class_names = iris.target_names # Train/test split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=42 ) def train_and_evaluate(learning_rate, n_estimators, max_depth): # Train the model clf = GradientBoostingClassifier( learning_rate=learning_rate, n_estimators=n_estimators, max_depth=int(max_depth), random_state=42 ) clf.fit(X_train, y_train) # Predict on test set y_pred = clf.predict(X_test) # Calculate accuracy accuracy = accuracy_score(y_test, y_pred) # Calculate confusion matrix cm = confusion_matrix(y_test, y_pred) # Create a single figure with 2 subplots fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) # --- Subplot 1: Feature Importances --- importances = clf.feature_importances_ axs[0].barh(range(len(feature_names)), importances, color='skyblue') axs[0].set_yticks(range(len(feature_names))) axs[0].set_yticklabels(feature_names) axs[0].set_xlabel("Importance") axs[0].set_title("Feature Importances") # --- Subplot 2: Confusion Matrix Heatmap --- im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) axs[1].set_title("Confusion Matrix") # Add colorbar cbar = fig.colorbar(im, ax=axs[1]) # Tick marks for x/y axes axs[1].set_xticks(range(len(class_names))) axs[1].set_yticks(range(len(class_names))) axs[1].set_xticklabels(class_names, rotation=45, ha="right") axs[1].set_yticklabels(class_names) axs[1].set_ylabel('True Label') axs[1].set_xlabel('Predicted Label') # Write the counts in each cell thresh = cm.max() / 2.0 for i in range(cm.shape[0]): for j in range(cm.shape[1]): color = "white" if cm[i, j] > thresh else "black" axs[1].text(j, i, format(cm[i, j], "d"), ha="center", va="center", color=color) plt.tight_layout() # Return textual results + the figure results_text = f"Accuracy: {accuracy:.3f}" return results_text, fig def predict_species(sepal_length, sepal_width, petal_length, petal_width, learning_rate, n_estimators, max_depth): clf = GradientBoostingClassifier( learning_rate=learning_rate, n_estimators=n_estimators, max_depth=int(max_depth), random_state=42 ) clf.fit(X_train, y_train) user_sample = np.array([[sepal_length, sepal_width, petal_length, petal_width]]) prediction = clf.predict(user_sample)[0] return f"Predicted species: {class_names[prediction]}" with gr.Blocks() as demo: with gr.Tab("Train & Evaluate"): gr.Markdown("## Train a GradientBoostingClassifier on the Iris dataset") learning_rate_slider = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate") n_estimators_slider = gr.Slider(50, 300, value=100, step=50, label="n_estimators") max_depth_slider = gr.Slider(1, 10, value=3, step=1, label="max_depth") train_button = gr.Button("Train & Evaluate") output_text = gr.Textbox(label="Results") output_plot = gr.Plot(label="Feature Importances & Confusion Matrix") train_button.click( fn=train_and_evaluate, inputs=[learning_rate_slider, n_estimators_slider, max_depth_slider], outputs=[output_text, output_plot], ) with gr.Tab("Predict"): gr.Markdown("## Predict Iris Species with GradientBoostingClassifier") sepal_length_input = gr.Number(value=5.1, label=feature_names[0]) sepal_width_input = gr.Number(value=3.5, label=feature_names[1]) petal_length_input = gr.Number(value=1.4, label=feature_names[2]) petal_width_input = gr.Number(value=0.2, label=feature_names[3]) learning_rate_slider2 = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate") n_estimators_slider2 = gr.Slider(50, 300, value=100, step=50, label="n_estimators") max_depth_slider2 = gr.Slider(1, 10, value=3, step=1, label="max_depth") predict_button = gr.Button("Predict") prediction_text = gr.Textbox(label="Prediction") predict_button.click( fn=predict_species, inputs=[ sepal_length_input, sepal_width_input, petal_length_input, petal_width_input, learning_rate_slider2, n_estimators_slider2, max_depth_slider2, ], outputs=prediction_text ) demo.launch()