import gradio as gr import numpy as np from sklearn.datasets import load_iris from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix # 1. Load dataset iris = load_iris() X, y = iris.data, iris.target feature_names = iris.feature_names class_names = iris.target_names # Split into train/test X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=42 ) # 2. Define a function that takes hyperparameters and returns model accuracy + confusion matrix def train_and_evaluate(learning_rate, n_estimators, max_depth): # Train model clf = GradientBoostingClassifier( learning_rate=learning_rate, n_estimators=n_estimators, max_depth=int(max_depth), random_state=42 ) clf.fit(X_train, y_train) # Predict on test data y_pred = clf.predict(X_test) # Calculate metrics accuracy = accuracy_score(y_test, y_pred) cm = confusion_matrix(y_test, y_pred) # Convert confusion matrix to a more display-friendly format cm_display = "" for row in cm: cm_display += str(row) + "\n" return f"Accuracy: {accuracy:.3f}\nConfusion Matrix:\n{cm_display}" # 3. Define a prediction function for user-supplied feature values def predict_species(sepal_length, sepal_width, petal_length, petal_width, learning_rate, n_estimators, max_depth): # Train a new model using same hyperparams clf = GradientBoostingClassifier( learning_rate=learning_rate, n_estimators=n_estimators, max_depth=int(max_depth), random_state=42 ) clf.fit(X_train, y_train) # Predict species user_sample = np.array([[sepal_length, sepal_width, petal_length, petal_width]]) prediction = clf.predict(user_sample)[0] return f"Predicted species: {class_names[prediction]}" # 4. Build the Gradio interface # Inputs to tune hyperparameters hyperparam_inputs = [ gr.inputs.Slider(0.01, 1.0, step=0.01, default=0.1, label="learning_rate"), gr.inputs.Slider(50, 300, step=50, default=100, label="n_estimators"), gr.inputs.Slider(1, 10, step=1, default=3, label="max_depth") ] # Button or automatic “live” updates training_interface = gr.Interface( fn=train_and_evaluate, inputs=hyperparam_inputs, outputs="text", title="Gradient Boosting Training and Evaluation", description="Train a GradientBoostingClassifier on the Iris dataset with different hyperparameters." ) # Inputs for real-time prediction feature_inputs = [ gr.inputs.Number(default=5.1, label=feature_names[0]), gr.inputs.Number(default=3.5, label=feature_names[1]), gr.inputs.Number(default=1.4, label=feature_names[2]), gr.inputs.Number(default=0.2, label=feature_names[3]) ] + hyperparam_inputs prediction_interface = gr.Interface( fn=predict_species, inputs=feature_inputs, outputs="text", title="Iris Species Prediction", description="Use a GradientBoostingClassifier to predict Iris species from user input." ) demo = gr.TabbedInterface([training_interface, prediction_interface], ["Train & Evaluate", "Predict"]) # Launch the Gradio app demo.launch()