Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
from datasets import load_dataset | |
from sklearn.ensemble import GradientBoostingClassifier | |
from sklearn.model_selection import train_test_split | |
from sklearn.metrics import accuracy_score, confusion_matrix | |
matplotlib.use('Agg') # Avoid issues in some remote environments | |
# Pre-populate a short list of "recommended" Hugging Face datasets | |
# (Replace "datasorg/iris" etc. with real dataset IDs you want to showcase) | |
SUGGESTED_DATASETS = [ | |
"datasorg/iris", # hypothetical ID | |
"uciml/wine_quality-red", # example from the HF Hub | |
"SKIP/ENTER_CUSTOM" # We'll treat this as a "separator" or "prompt" for custom | |
] | |
def load_and_prepare_dataset(dataset_id, label_column, feature_columns): | |
""" | |
Loads a dataset from the Hugging Face Hub, | |
converts it to a pandas DataFrame, | |
returns X, y as NumPy arrays for modeling. | |
""" | |
# Load only the "train" split for simplicity | |
# Many datasets have "train", "test", "validation" splits | |
ds = load_dataset(dataset_id, split="train") | |
# Convert to a DataFrame for easy manipulation | |
df = pd.DataFrame(ds) | |
# Subset to selected columns | |
if label_column not in df.columns: | |
raise ValueError(f"Label column '{label_column}' not in dataset columns: {df.columns.to_list()}") | |
for col in feature_columns: | |
if col not in df.columns: | |
raise ValueError(f"Feature column '{col}' not in dataset columns: {df.columns.to_list()}") | |
# Split into X and y | |
X = df[feature_columns].values | |
y = df[label_column].values | |
return X, y, df.columns.tolist() | |
def train_model(dataset_id, custom_dataset_id, label_column, feature_columns, | |
learning_rate, n_estimators, max_depth, test_size): | |
""" | |
1. Determine final dataset ID (either from dropdown or custom text). | |
2. Load dataset -> DataFrame -> X, y. | |
3. Train a GradientBoostingClassifier. | |
4. Generate plots & metrics (accuracy and confusion matrix). | |
""" | |
# Decide which dataset ID to use | |
if dataset_id != "SKIP/ENTER_CUSTOM": | |
final_id = dataset_id | |
else: | |
# Use the user-supplied "custom_dataset_id" | |
final_id = custom_dataset_id.strip() | |
# Prepare data | |
X, y, columns_available = load_and_prepare_dataset( | |
final_id, | |
label_column, | |
feature_columns | |
) | |
# Train/test split | |
X_train, X_test, y_train, y_test = train_test_split( | |
X, y, test_size=test_size, random_state=42 | |
) | |
# Train model | |
clf = GradientBoostingClassifier( | |
learning_rate=learning_rate, | |
n_estimators=int(n_estimators), | |
max_depth=int(max_depth), | |
random_state=42 | |
) | |
clf.fit(X_train, y_train) | |
# Evaluate | |
y_pred = clf.predict(X_test) | |
accuracy = accuracy_score(y_test, y_pred) | |
cm = confusion_matrix(y_test, y_pred) | |
# Plot figure | |
fig, axs = plt.subplots(1, 2, figsize=(10, 4)) | |
# Subplot 1: Feature Importances | |
importances = clf.feature_importances_ | |
axs[0].barh(range(len(feature_columns)), importances, color='skyblue') | |
axs[0].set_yticks(range(len(feature_columns))) | |
axs[0].set_yticklabels(feature_columns) | |
axs[0].set_xlabel("Importance") | |
axs[0].set_title("Feature Importances") | |
# Subplot 2: Confusion Matrix Heatmap | |
im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) | |
axs[1].set_title("Confusion Matrix") | |
plt.colorbar(im, ax=axs[1]) | |
# Labeling | |
axs[1].set_xlabel("Predicted") | |
axs[1].set_ylabel("True") | |
# If you want to annotate each cell: | |
thresh = cm.max() / 2.0 | |
for i in range(cm.shape[0]): | |
for j in range(cm.shape[1]): | |
color = "white" if cm[i, j] > thresh else "black" | |
axs[1].text(j, i, format(cm[i, j], "d"), ha="center", va="center", color=color) | |
plt.tight_layout() | |
output_text = f"**Dataset used:** {final_id}\n\n" | |
output_text += f"**Accuracy:** {accuracy:.3f}\n\n" | |
output_text += "**Confusion Matrix** (raw counts above)." | |
return output_text, fig, columns_available | |
def update_columns(dataset_id, custom_dataset_id): | |
""" | |
Callback to dynamically fetch the columns from the dataset | |
so the user can pick which columns to use as features/labels. | |
""" | |
if dataset_id != "SKIP/ENTER_CUSTOM": | |
final_id = dataset_id | |
else: | |
final_id = custom_dataset_id.strip() | |
# Try to load the dataset and return columns | |
try: | |
ds = load_dataset(final_id, split="train") | |
df = pd.DataFrame(ds) | |
cols = df.columns.tolist() | |
# Return as list of selectable options | |
return gr.update(choices=cols), gr.update(choices=cols), f"Columns found: {cols}" | |
except Exception as e: | |
return gr.update(choices=[]), gr.update(choices=[]), f"Error loading {final_id}: {e}" | |
with gr.Blocks() as demo: | |
gr.Markdown("## Train GradientBoostingClassifier on a Hugging Face dataset of your choice") | |
with gr.Row(): | |
dataset_dropdown = gr.Dropdown( | |
choices=SUGGESTED_DATASETS, | |
value=SUGGESTED_DATASETS[0], | |
label="Choose a dataset" | |
) | |
custom_dataset_id = gr.Textbox(label="Or enter HF dataset (user/dataset)", value="", | |
placeholder="e.g. 'username/my_custom_dataset'") | |
# Button to load columns from the chosen dataset | |
load_cols_btn = gr.Button("Load columns") | |
load_cols_info = gr.Markdown() | |
with gr.Row(): | |
label_col = gr.Dropdown(choices=[], label="Label column (choose 1)") | |
feature_cols = gr.CheckboxGroup(choices=[], label="Feature columns (choose 1 or more)") | |
# Once columns are chosen, we can set hyperparams | |
learning_rate_slider = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate") | |
n_estimators_slider = gr.Slider(50, 300, value=100, step=50, label="n_estimators") | |
max_depth_slider = gr.Slider(1, 10, value=3, step=1, label="max_depth") | |
test_size_slider = gr.Slider(0.1, 0.9, value=0.3, step=0.1, label="test_size (fraction)") | |
train_button = gr.Button("Train & Evaluate") | |
output_text = gr.Markdown() | |
output_plot = gr.Plot() | |
# We might also want to show the columns for reference post-training | |
columns_return = gr.Markdown() | |
# When "Load columns" is clicked, we call update_columns to fetch the dataset columns | |
load_cols_btn.click( | |
fn=update_columns, | |
inputs=[dataset_dropdown, custom_dataset_id], | |
outputs=[label_col, feature_cols, load_cols_info] | |
) | |
# When "Train & Evaluate" is clicked, we train the model | |
train_button.click( | |
fn=train_model, | |
inputs=[ | |
dataset_dropdown, | |
custom_dataset_id, | |
label_col, | |
feature_cols, | |
learning_rate_slider, | |
n_estimators_slider, | |
max_depth_slider, | |
test_size_slider | |
], | |
outputs=[output_text, output_plot, columns_return] | |
) | |
demo.launch() | |