ZennyKenny's picture
fix update_columns
349af26 verified
raw
history blame
7.31 kB
import gradio as gr
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
from datasets import load_dataset
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
matplotlib.use('Agg') # Avoid issues in some remote environments
# Pre-populate a short list of "recommended" Hugging Face datasets
# (Replace "datasorg/iris" etc. with real dataset IDs you want to showcase)
SUGGESTED_DATASETS = [
"datasorg/iris", # hypothetical ID
"uciml/wine_quality-red", # example from the HF Hub
"SKIP/ENTER_CUSTOM" # We'll treat this as a "separator" or "prompt" for custom
]
def load_and_prepare_dataset(dataset_id, label_column, feature_columns):
"""
Loads a dataset from the Hugging Face Hub,
converts it to a pandas DataFrame,
returns X, y as NumPy arrays for modeling.
"""
# Load only the "train" split for simplicity
# Many datasets have "train", "test", "validation" splits
ds = load_dataset(dataset_id, split="train")
# Convert to a DataFrame for easy manipulation
df = pd.DataFrame(ds)
# Subset to selected columns
if label_column not in df.columns:
raise ValueError(f"Label column '{label_column}' not in dataset columns: {df.columns.to_list()}")
for col in feature_columns:
if col not in df.columns:
raise ValueError(f"Feature column '{col}' not in dataset columns: {df.columns.to_list()}")
# Split into X and y
X = df[feature_columns].values
y = df[label_column].values
return X, y, df.columns.tolist()
def train_model(dataset_id, custom_dataset_id, label_column, feature_columns,
learning_rate, n_estimators, max_depth, test_size):
"""
1. Determine final dataset ID (either from dropdown or custom text).
2. Load dataset -> DataFrame -> X, y.
3. Train a GradientBoostingClassifier.
4. Generate plots & metrics (accuracy and confusion matrix).
"""
# Decide which dataset ID to use
if dataset_id != "SKIP/ENTER_CUSTOM":
final_id = dataset_id
else:
# Use the user-supplied "custom_dataset_id"
final_id = custom_dataset_id.strip()
# Prepare data
X, y, columns_available = load_and_prepare_dataset(
final_id,
label_column,
feature_columns
)
# Train/test split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=test_size, random_state=42
)
# Train model
clf = GradientBoostingClassifier(
learning_rate=learning_rate,
n_estimators=int(n_estimators),
max_depth=int(max_depth),
random_state=42
)
clf.fit(X_train, y_train)
# Evaluate
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
cm = confusion_matrix(y_test, y_pred)
# Plot figure
fig, axs = plt.subplots(1, 2, figsize=(10, 4))
# Subplot 1: Feature Importances
importances = clf.feature_importances_
axs[0].barh(range(len(feature_columns)), importances, color='skyblue')
axs[0].set_yticks(range(len(feature_columns)))
axs[0].set_yticklabels(feature_columns)
axs[0].set_xlabel("Importance")
axs[0].set_title("Feature Importances")
# Subplot 2: Confusion Matrix Heatmap
im = axs[1].imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
axs[1].set_title("Confusion Matrix")
plt.colorbar(im, ax=axs[1])
# Labeling
axs[1].set_xlabel("Predicted")
axs[1].set_ylabel("True")
# If you want to annotate each cell:
thresh = cm.max() / 2.0
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
color = "white" if cm[i, j] > thresh else "black"
axs[1].text(j, i, format(cm[i, j], "d"), ha="center", va="center", color=color)
plt.tight_layout()
output_text = f"**Dataset used:** {final_id}\n\n"
output_text += f"**Accuracy:** {accuracy:.3f}\n\n"
output_text += "**Confusion Matrix** (raw counts above)."
return output_text, fig, columns_available
def update_columns(dataset_id, dataset_config, custom_dataset_id):
"""
Load the dataset from HF hub, using either the suggested one or the custom user-specified,
plus an optional config.
"""
if dataset_id != "SKIP/ENTER_CUSTOM":
final_id = dataset_id
final_config = dataset_config.strip() if dataset_config else None
else:
# Use the user-supplied text
final_id = custom_dataset_id.strip()
final_config = None # or parse from text if you like
try:
if final_config:
ds = load_dataset(final_id, final_config, split="train")
else:
ds = load_dataset(final_id, split="train")
df = pd.DataFrame(ds)
cols = df.columns.tolist()
return gr.update(choices=cols), gr.update(choices=cols), f"Columns found: {cols}"
except Exception as e:
return gr.update(choices=[]), gr.update(choices=[]), f"Error loading {final_id}: {e}"
with gr.Blocks() as demo:
gr.Markdown("## Train GradientBoostingClassifier on a Hugging Face dataset of your choice")
with gr.Row():
dataset_dropdown = gr.Dropdown(
choices=SUGGESTED_DATASETS,
value=SUGGESTED_DATASETS[0],
label="Choose a dataset"
)
custom_dataset_id = gr.Textbox(label="Or enter HF dataset (user/dataset)", value="",
placeholder="e.g. 'username/my_custom_dataset'")
# Button to load columns from the chosen dataset
load_cols_btn = gr.Button("Load columns")
load_cols_info = gr.Markdown()
with gr.Row():
label_col = gr.Dropdown(choices=[], label="Label column (choose 1)")
feature_cols = gr.CheckboxGroup(choices=[], label="Feature columns (choose 1 or more)")
# Once columns are chosen, we can set hyperparams
learning_rate_slider = gr.Slider(0.01, 1.0, value=0.1, step=0.01, label="learning_rate")
n_estimators_slider = gr.Slider(50, 300, value=100, step=50, label="n_estimators")
max_depth_slider = gr.Slider(1, 10, value=3, step=1, label="max_depth")
test_size_slider = gr.Slider(0.1, 0.9, value=0.3, step=0.1, label="test_size (fraction)")
train_button = gr.Button("Train & Evaluate")
output_text = gr.Markdown()
output_plot = gr.Plot()
# We might also want to show the columns for reference post-training
columns_return = gr.Markdown()
# When "Load columns" is clicked, we call update_columns to fetch the dataset columns
load_cols_btn.click(
fn=update_columns,
inputs=[dataset_dropdown, custom_dataset_id],
outputs=[label_col, feature_cols, load_cols_info]
)
# When "Train & Evaluate" is clicked, we train the model
train_button.click(
fn=train_model,
inputs=[
dataset_dropdown,
custom_dataset_id,
label_col,
feature_cols,
learning_rate_slider,
n_estimators_slider,
max_depth_slider,
test_size_slider
],
outputs=[output_text, output_plot, columns_return]
)
demo.launch()