Commit
·
aeb90d9
1
Parent(s):
860bbb8
Upload 2 files
Browse files- app.py +129 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy import sparse
|
3 |
+
from scipy import ndimage
|
4 |
+
from sklearn.linear_model import Lasso
|
5 |
+
from sklearn.linear_model import Ridge
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
|
10 |
+
def _weights(x, dx=1, orig=0):
|
11 |
+
x = np.ravel(x)
|
12 |
+
floor_x = np.floor((x - orig) / dx).astype(np.int64)
|
13 |
+
alpha = (x - orig - floor_x * dx) / dx
|
14 |
+
return np.hstack((floor_x, floor_x + 1)), np.hstack((1 - alpha, alpha))
|
15 |
+
|
16 |
+
|
17 |
+
def _generate_center_coordinates(l_x):
|
18 |
+
X, Y = np.mgrid[:l_x, :l_x].astype(np.float64)
|
19 |
+
center = l_x / 2.0
|
20 |
+
X += 0.5 - center
|
21 |
+
Y += 0.5 - center
|
22 |
+
return X, Y
|
23 |
+
|
24 |
+
|
25 |
+
def build_projection_operator(l_x, n_dir):
|
26 |
+
"""Compute the tomography design matrix.
|
27 |
+
|
28 |
+
Parameters
|
29 |
+
----------
|
30 |
+
|
31 |
+
l_x : int
|
32 |
+
linear size of image array
|
33 |
+
|
34 |
+
n_dir : int
|
35 |
+
number of angles at which projections are acquired.
|
36 |
+
|
37 |
+
Returns
|
38 |
+
-------
|
39 |
+
p : sparse matrix of shape (n_dir l_x, l_x**2)
|
40 |
+
"""
|
41 |
+
X, Y = _generate_center_coordinates(l_x)
|
42 |
+
angles = np.linspace(0, np.pi, n_dir, endpoint=False)
|
43 |
+
data_inds, weights, camera_inds = [], [], []
|
44 |
+
data_unravel_indices = np.arange(l_x**2)
|
45 |
+
data_unravel_indices = np.hstack((data_unravel_indices, data_unravel_indices))
|
46 |
+
for i, angle in enumerate(angles):
|
47 |
+
Xrot = np.cos(angle) * X - np.sin(angle) * Y
|
48 |
+
inds, w = _weights(Xrot, dx=1, orig=X.min())
|
49 |
+
mask = np.logical_and(inds >= 0, inds < l_x)
|
50 |
+
weights += list(w[mask])
|
51 |
+
camera_inds += list(inds[mask] + i * l_x)
|
52 |
+
data_inds += list(data_unravel_indices[mask])
|
53 |
+
proj_operator = sparse.coo_matrix((weights, (camera_inds, data_inds)))
|
54 |
+
return proj_operator
|
55 |
+
|
56 |
+
|
57 |
+
def generate_synthetic_data(l):
|
58 |
+
"""Synthetic binary data"""
|
59 |
+
rs = np.random.RandomState(0)
|
60 |
+
n_pts = 36
|
61 |
+
x, y = np.ogrid[0:l, 0:l]
|
62 |
+
mask_outer = (x - l / 2.0) ** 2 + (y - l / 2.0) ** 2 < (l / 2.0) ** 2
|
63 |
+
mask = np.zeros((l, l))
|
64 |
+
points = l * rs.rand(2, n_pts)
|
65 |
+
mask[(points[0]).astype(int), (points[1]).astype(int)] = 1
|
66 |
+
mask = ndimage.gaussian_filter(mask, sigma=l / n_pts)
|
67 |
+
res = np.logical_and(mask > mask.mean(), mask_outer)
|
68 |
+
return np.logical_xor(res, ndimage.binary_erosion(res))
|
69 |
+
|
70 |
+
def Generate_synthetic_images_and_projections(l,alpha_l2,alpha_l1):
|
71 |
+
|
72 |
+
# Generate synthetic images, and projections
|
73 |
+
proj_operator = build_projection_operator(l, l // 7)
|
74 |
+
data = generate_synthetic_data(l)
|
75 |
+
proj = proj_operator @ data.ravel()[:, np.newaxis]
|
76 |
+
proj += 0.15 * np.random.randn(*proj.shape)
|
77 |
+
|
78 |
+
# Reconstruction with L2 (Ridge) penalization
|
79 |
+
rgr_ridge = Ridge(alpha=alpha_l2)
|
80 |
+
rgr_ridge.fit(proj_operator, proj.ravel())
|
81 |
+
rec_l2 = rgr_ridge.coef_.reshape(l, l)
|
82 |
+
|
83 |
+
# Reconstruction with L1 (Lasso) penalization
|
84 |
+
# the best value of alpha was determined using cross validation
|
85 |
+
# with LassoCV
|
86 |
+
rgr_lasso = Lasso(alpha=alpha_l1)
|
87 |
+
rgr_lasso.fit(proj_operator, proj.ravel())
|
88 |
+
rec_l1 = rgr_lasso.coef_.reshape(l, l)
|
89 |
+
|
90 |
+
fig = plt.figure(figsize=(8, 3.3))
|
91 |
+
plt.subplot(131)
|
92 |
+
plt.imshow(data, cmap=plt.cm.gray, interpolation="nearest")
|
93 |
+
plt.axis("off")
|
94 |
+
plt.title("original image")
|
95 |
+
plt.subplot(132)
|
96 |
+
plt.imshow(rec_l2, cmap=plt.cm.gray, interpolation="nearest")
|
97 |
+
plt.title("L2 penalization")
|
98 |
+
plt.axis("off")
|
99 |
+
plt.subplot(133)
|
100 |
+
plt.imshow(rec_l1, cmap=plt.cm.gray, interpolation="nearest")
|
101 |
+
plt.title("L1 penalization")
|
102 |
+
plt.axis("off")
|
103 |
+
plt.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0, right=1)
|
104 |
+
|
105 |
+
fig.canvas.draw()
|
106 |
+
image = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
|
107 |
+
image = image.reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
108 |
+
plt.close(fig)
|
109 |
+
return image
|
110 |
+
|
111 |
+
title = "Compressive sensing: Tomography reconstruction with L1 prior (Lasso)"
|
112 |
+
|
113 |
+
des="This example shows the reconstruction of an image from a set of parallel projections, acquired along different angles. Such a dataset is acquired in computed tomography (CT)."
|
114 |
+
with gr.Blocks(title=title) as demo:
|
115 |
+
gr.Markdown(f" {title}")
|
116 |
+
gr.Markdown(f"{des}")
|
117 |
+
gr.Markdown("[This demo is based on Scikit-Learn example](https://scikit-learn.org/stable/auto_examples/applications/plot_tomography_l1_reconstruction.html#sphx-glr-auto-examples-applications-plot-tomography-l1-reconstruction-py)")
|
118 |
+
|
119 |
+
with gr.Row():
|
120 |
+
l=gr.Slider(minimum=100, maximum=500, step=1, value = 128, label = "Linear size")
|
121 |
+
alpha_l2=gr.Slider(minimum=0, maximum=1, step=0.001, value = 0.2, label = "alpha l2")
|
122 |
+
alpha_l1=gr.Slider(minimum=0, maximum=1, step=0.001, value = 0.001, label = "alpha l1")
|
123 |
+
|
124 |
+
|
125 |
+
output = gr.Image()
|
126 |
+
btn = gr.Button(value="Submit")
|
127 |
+
btn.click(fn=Generate_synthetic_images_and_projections, inputs = [l,alpha_l2,alpha_l1], outputs=output)
|
128 |
+
|
129 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
scipy
|
3 |
+
matplotlib
|
4 |
+
scikit-learn
|