Spaces:
Runtime error
Runtime error
Modified::added Gradio Blocks with Space description
Browse files
app.py
CHANGED
@@ -33,18 +33,40 @@ def agglomorative_cluster(n_samples: int, n_neighbours: int, n_clusters: int, li
|
|
33 |
|
34 |
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
demo.launch()
|
50 |
|
|
|
33 |
|
34 |
|
35 |
|
36 |
+
with gr.Blocks() as demo:
|
37 |
+
gr.Markdown("""
|
38 |
+
# Agglomorative Clustering with and without Structure
|
39 |
+
|
40 |
+
This space is an implementation of the scikit-learn document [Agglomorative clustering with and without structure](https://scikit-learn.org/stable/auto_examples/cluster/plot_agglomerative_clustering.html#sphx-glr-auto-examples-cluster-plot-agglomerative-clustering-py)
|
41 |
+
This space shows the effects of imposing **connectivity graph** to capture local structure in the data.
|
42 |
+
You can uncheck the checkbox `connectivity` to see the effect on data clustering without **connectivity graph**. There are other parameters in this space
|
43 |
+
which you can play with such as `n_samples` (the number of data samples), `n_neighbours` (the number of neighbours), `n_clusters` (the number of clusters) and
|
44 |
+
what type of linkage to use for Agglomorative clustering `linkage`.
|
45 |
+
|
46 |
+
Have fun playing with the tool 🤗
|
47 |
+
""")
|
48 |
+
|
49 |
+
n_samples = gr.Slider(0, 20_000, label="n_samples", info="the number of samples in the data.", step=1)
|
50 |
+
n_neighbours = gr.Slider(0, 30, label="n_neighbours", info="the number of neighbours in the data", step=1)
|
51 |
+
n_clusters = gr.Slider(3, 30, label="n_clusters", info="the number of clusters in the data", step=2)
|
52 |
+
linkage = gr.Dropdown(['average', 'complete', 'ward', 'single'], label="linkage", info="the different types of aggolomorative clustering techniques")
|
53 |
+
connectivity = gr.Checkbox(True, label="connectivity", info="whether to impose a connectivity into the graph")
|
54 |
+
output = gr.Plot(label="Plot")
|
55 |
+
|
56 |
+
plot_btn = gr.Button("Plot")
|
57 |
+
plot_btn.click(fn=agglomorative_cluster, inputs=[n_samples, n_neighbours, n_clusters, linkage, connectivity],
|
58 |
+
outputs=output, api_name="plotcluster")
|
59 |
+
|
60 |
+
# demo = gr.Interface(
|
61 |
+
# fn = agglomorative_cluster,
|
62 |
+
# inputs = [gr.Slider(0, 20_000, label="n_samples", info="the number of samples in the data.", step=1),
|
63 |
+
# gr.Slider(0, 30, label="n_neighbours", info="the number of neighbours in the data", step=1),
|
64 |
+
# gr.Dropdown([3, 30], label="n_clusters", info="the number of clusters in the data"),
|
65 |
+
# gr.Dropdown(['average', 'complete', 'ward', 'single'], label="linkage", info="the different types of aggolomorative clustering techniques"),
|
66 |
+
# gr.Checkbox(True, label="connectivity", info="whether to impose a connectivity into the graph")],
|
67 |
+
|
68 |
+
# outputs = [gr.Plot(label="Plot")]
|
69 |
+
# )
|
70 |
|
71 |
demo.launch()
|
72 |
|