import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "DiscoResearch/DiscoLM_German_7b_v1" model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) def generate_answer(question): inputs = tokenizer.encode("Question: " + question, return_tensors="pt") outputs = model.generate(inputs, max_length=2000, num_return_sequences=1, do_sample=True) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer iface = gr.Interface( fn=generate_answer, inputs="text", outputs="text", title="The Art of Prompt Engineering", description="Definiere deine Prompt, am besten auf Deutsch", ) iface.launch(share=True) # Deploy the interface