Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from transformers import AutoPeftModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
5 |
+
from datasets import load_dataset
|
6 |
+
from huggingface_hub import login
|
7 |
+
|
8 |
+
login(token=os.environ.get('HF_TOKEN', None))
|
9 |
+
|
10 |
+
model_name = "skaltenp/Meta-Llama-3-8B-sepsis_cases-199900595"
|
11 |
+
|
12 |
+
"""
|
13 |
+
bnb_config = BitsAndBytesConfig(
|
14 |
+
load_in_4bit=True,
|
15 |
+
bnb_4bit_quant_type="nf4",
|
16 |
+
bnb_4bit_compute_dtype=torch.float16,
|
17 |
+
)
|
18 |
+
base_model = AutoPeftModelForCausalLM.from_pretrained(
|
19 |
+
model_name,
|
20 |
+
quantization_config=bnb_config,
|
21 |
+
device_map="cuda:0",
|
22 |
+
trust_remote_code=True,
|
23 |
+
#token=True,
|
24 |
+
)
|
25 |
+
"""
|
26 |
+
model = AutoPeftModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
28 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
29 |
+
|
30 |
+
train = load_dataset("skaltenp/sepsis_cases")["train"]
|
31 |
+
|
32 |
+
def prepare_sample_text(example, tokenizer, remove_indent=False, start=None, end=None):
|
33 |
+
"""Prepare the text from a sample of the dataset."""
|
34 |
+
thread = example["event_list"]
|
35 |
+
if start and end:
|
36 |
+
thread = thread[start:end]
|
37 |
+
text = ""
|
38 |
+
for message in thread:
|
39 |
+
text += f"{message}{tokenizer.eos_token}\n"
|
40 |
+
return text
|
41 |
+
|
42 |
+
dataset = load_dataset(
|
43 |
+
args.dataset_name,
|
44 |
+
token=True,
|
45 |
+
num_proc=args.num_workers,
|
46 |
+
download_mode='force_redownload'
|
47 |
+
)
|
48 |
+
train_data = dataset["train"].train_test_split(train_size=0.8, shuffle=True, seed=199900595)
|
49 |
+
test_data = train_data["test"]
|
50 |
+
train_data = train_data["train"].train_test_split(train_size=0.8, shuffle=True, seed=199900595)
|
51 |
+
valid_data = train_data["test"]
|
52 |
+
train_data = train_data["train"]
|
53 |
+
|
54 |
+
def generate_answer(question):
|
55 |
+
#inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
|
56 |
+
inputs = tokenizer(question, return_tensors="pt")
|
57 |
+
outputs = model.generate(**inputs, max_length=250, num_return_sequences=1, do_sample=True)
|
58 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
59 |
+
return answer
|
60 |
+
|
61 |
+
iface = gr.Interface(
|
62 |
+
fn=generate_answer,
|
63 |
+
inputs="text",
|
64 |
+
outputs="text",
|
65 |
+
title="Straight Outta Logs",
|
66 |
+
examples = [prepare_sample_text(test_data[0], tokenizer, start=0, end=3), prepare_sample_text(test_data[4], tokenizer, start=0, end=5), prepare_sample_text(test_data[50], tokenizer, start=0, end=1)]
|
67 |
+
description="Use the examples or copy own Sepsis Case example",
|
68 |
+
)
|
69 |
+
|
70 |
+
iface.launch(share=True) # Deploy the interface
|