import streamlit as st from llama_cpp import Llama from huggingface_hub import hf_hub_download import os import gc # Available models MODELS = { "Qwen2.5-7B-Instruct (Q2_K)": { "repo_id": "Qwen/Qwen2.5-7B-Instruct-GGUF", "filename": "qwen2.5-7b-instruct-q2_k.gguf", "description": "Qwen2.5-7B Instruct (Q2_K)" }, "Gemma-3-4B-IT (Q4_K_M)": { "repo_id": "unsloth/gemma-3-4b-it-GGUF", "filename": "gemma-3-4b-it-Q4_K_M.gguf", "description": "Gemma 3 4B IT (Q4_K_M)" }, "Phi-4-mini-Instruct (Q4_K_M)": { "repo_id": "unsloth/Phi-4-mini-instruct-GGUF", "filename": "Phi-4-mini-instruct-Q4_K_M.gguf", "description": "Phi-4 Mini Instruct (Q4_K_M)" }, "Meta-Llama-3.1-8B-Instruct (Q2_K)": { "repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct-GGUF", "filename": "Meta-Llama-3.1-8B-Instruct.Q2_K.gguf", "description": "Meta Llama 3.1 8B Instruct (Q2_K)" }, "DeepSeek-R1-Distill-Llama-8B (Q2_K)": { "repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B-GGUF", "filename": "DeepSeek-R1-Distill-Llama-8B-Q2_K.gguf", "description": "DeepSeek R1 Distill Llama 8B (Q2_K)" }, "Mistral-7B-Instruct-v0.3 (IQ3_XS)": { "repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3-GGUF", "filename": "Mistral-7B-Instruct-v0.3.IQ3_XS.gguf", "description": "Mistral 7B Instruct v0.3 (IQ3_XS)" }, "Qwen2.5-Coder-7B-Instruct (Q2_K)": { "repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct-GGUF", "filename": "qwen2.5-coder-7b-instruct-q2_k.gguf", "description": "Qwen2.5 Coder 7B Instruct (Q2_K)" }, } # Sidebar for model selection and settings with st.sidebar: st.header("⚙️ Settings") selected_model_name = st.selectbox("Select Model", list(MODELS.keys())) system_prompt = st.text_area("System Prompt", value="You are a helpful assistant.", height=80) max_tokens = st.slider("Max tokens", 64, 2048, 512, step=32) temperature = st.slider("Temperature", 0.1, 2.0, 0.7) top_k = st.slider("Top-K", 1, 100, 40) top_p = st.slider("Top-P", 0.1, 1.0, 0.95) repeat_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.1) # Model info selected_model = MODELS[selected_model_name] model_path = os.path.join("models", selected_model["filename"]) # Ensure model directory exists os.makedirs("models", exist_ok=True) # Function to clean up old models def cleanup_old_models(): for f in os.listdir("models"): if f.endswith(".gguf") and f != selected_model["filename"]: try: os.remove(os.path.join("models", f)) except Exception as e: st.warning(f"Couldn't delete old model {f}: {e}") # Function to download the selected model def download_model(): with st.spinner(f"Downloading {selected_model['filename']}..."): hf_hub_download( repo_id=selected_model["repo_id"], filename=selected_model["filename"], local_dir="./models", local_dir_use_symlinks=False, ) # Function to validate or download the model def validate_or_download_model(): if not os.path.exists(model_path): cleanup_old_models() download_model() try: # Attempt to load the model with minimal resources to validate _ = Llama(model_path=model_path, n_ctx=16, n_threads=1) except Exception as e: st.warning(f"Model file was invalid or corrupt: {e}\nRedownloading...") try: os.remove(model_path) except: pass cleanup_old_models() download_model() # Validate or download the selected model validate_or_download_model() # Load model if changed if "model_name" not in st.session_state or st.session_state.model_name != selected_model_name: if "llm" in st.session_state and st.session_state.llm