# STEP 1: Install dependencies # Note: Use requirements.txt when deploying import torch from transformers import AutoImageProcessor, AutoModelForObjectDetection from PIL import Image, ImageDraw, ImageFont import gradio as gr # STEP 2: Load YOLOS model & processor model_name = "hustvl/yolos-base" processor = AutoImageProcessor.from_pretrained(model_name) model = AutoModelForObjectDetection.from_pretrained(model_name) model.eval() if torch.cuda.is_available(): model.to(torch.float16).to("cuda") # STEP 3: Detection function with object name return def detect_yolos(image, threshold=0.5): image = image.convert("RGB") inputs = processor(images=image, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model(**inputs) target_sizes = torch.tensor([image.size[::-1]], device=model.device) results = processor.post_process_object_detection(outputs, threshold=threshold, target_sizes=target_sizes)[0] draw = ImageDraw.Draw(image) font = ImageFont.load_default() detected_labels = [] for score, label_idx, box in zip(results["scores"], results["labels"], results["boxes"]): label = model.config.id2label[label_idx.item()] detected_labels.append(label) box = [round(i, 2) for i in box.tolist()] draw.rectangle(box, outline="green", width=2) draw.text((box[0], box[1] - 10), f"{label}: {score:.2f}", fill="green", font=font) label_summary = ", ".join(set(detected_labels)) if detected_labels else "No objects detected." return image, label_summary # STEP 4: Gradio UI demo = gr.Interface( fn=detect_yolos, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Slider(0, 1, value=0.5, label="Confidence Threshold") ], outputs=[ gr.Image(type="pil", label="Image with Detections"), gr.Textbox(label="Detected Object Names") ], title="📦 YOLOS Object Detection + Label List", description="Detects objects using YOLOS and lists all object names in a textbox." ) demo.launch()