Spaces:
Build error
Build error
File size: 26,029 Bytes
910e2ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
from typing import Any, Dict, List, Optional, Union
import torch
import os
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from tqdm import tqdm
from diffusers.utils.torch_utils import randn_tensor
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import is_torch_version
from .modeling_normalization import AdaLayerNormContinuous
from .modeling_embedding import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings
from .modeling_flux_block import FluxTransformerBlock, FluxSingleTransformerBlock
from trainer_misc import (
is_sequence_parallel_initialized,
get_sequence_parallel_group,
get_sequence_parallel_world_size,
get_sequence_parallel_rank,
all_to_all,
)
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
assert dim % 2 == 0, "The dimension must be even."
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
batch_size, seq_length = pos.shape
out = torch.einsum("...n,d->...nd", pos, omega)
cos_out = torch.cos(out)
sin_out = torch.sin(out)
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
return out.float()
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: List[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: torch.Tensor) -> torch.Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(2)
class PyramidFluxTransformer(ModelMixin, ConfigMixin):
"""
The Transformer model introduced in Flux.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
Parameters:
patch_size (`int`): Patch size to turn the input data into small patches.
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
patch_size: int = 1,
in_channels: int = 64,
num_layers: int = 19,
num_single_layers: int = 38,
attention_head_dim: int = 64,
num_attention_heads: int = 24,
joint_attention_dim: int = 4096,
pooled_projection_dim: int = 768,
axes_dims_rope: List[int] = [16, 24, 24],
use_flash_attn: bool = False,
use_temporal_causal: bool = True,
interp_condition_pos: bool = True,
use_gradient_checkpointing: bool = False,
gradient_checkpointing_ratio: float = 0.6,
):
super().__init__()
self.out_channels = in_channels
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
self.pos_embed = EmbedND(dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope)
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
)
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
self.transformer_blocks = nn.ModuleList(
[
FluxTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
attention_head_dim=self.config.attention_head_dim,
use_flash_attn=use_flash_attn,
)
for i in range(self.config.num_layers)
]
)
self.single_transformer_blocks = nn.ModuleList(
[
FluxSingleTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.config.num_attention_heads,
attention_head_dim=self.config.attention_head_dim,
use_flash_attn=use_flash_attn,
)
for i in range(self.config.num_single_layers)
]
)
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
self.gradient_checkpointing = use_gradient_checkpointing
self.gradient_checkpointing_ratio = gradient_checkpointing_ratio
self.use_temporal_causal = use_temporal_causal
if self.use_temporal_causal:
print("Using temporal causal attention")
self.use_flash_attn = use_flash_attn
if self.use_flash_attn:
print("Using Flash attention")
self.patch_size = 2 # hard-code for now
# init weights
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv3d)):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize all the conditioning to normal init
nn.init.normal_(self.time_text_embed.timestep_embedder.linear_1.weight, std=0.02)
nn.init.normal_(self.time_text_embed.timestep_embedder.linear_2.weight, std=0.02)
nn.init.normal_(self.time_text_embed.text_embedder.linear_1.weight, std=0.02)
nn.init.normal_(self.time_text_embed.text_embedder.linear_2.weight, std=0.02)
nn.init.normal_(self.context_embedder.weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.transformer_blocks:
nn.init.constant_(block.norm1.linear.weight, 0)
nn.init.constant_(block.norm1.linear.bias, 0)
nn.init.constant_(block.norm1_context.linear.weight, 0)
nn.init.constant_(block.norm1_context.linear.bias, 0)
for block in self.single_transformer_blocks:
nn.init.constant_(block.norm.linear.weight, 0)
nn.init.constant_(block.norm.linear.bias, 0)
# Zero-out output layers:
nn.init.constant_(self.norm_out.linear.weight, 0)
nn.init.constant_(self.norm_out.linear.bias, 0)
nn.init.constant_(self.proj_out.weight, 0)
nn.init.constant_(self.proj_out.bias, 0)
@torch.no_grad()
def _prepare_image_ids(self, batch_size, temp, height, width, train_height, train_width, device, start_time_stamp=0):
latent_image_ids = torch.zeros(temp, height, width, 3)
# Temporal Rope
latent_image_ids[..., 0] = latent_image_ids[..., 0] + torch.arange(start_time_stamp, start_time_stamp + temp)[:, None, None]
# height Rope
if height != train_height:
height_pos = F.interpolate(torch.arange(train_height)[None, None, :].float(), height, mode='linear').squeeze(0, 1)
else:
height_pos = torch.arange(train_height).float()
latent_image_ids[..., 1] = latent_image_ids[..., 1] + height_pos[None, :, None]
# width rope
if width != train_width:
width_pos = F.interpolate(torch.arange(train_width)[None, None, :].float(), width, mode='linear').squeeze(0, 1)
else:
width_pos = torch.arange(train_width).float()
latent_image_ids[..., 2] = latent_image_ids[..., 2] + width_pos[None, None, :]
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1, 1)
latent_image_ids = rearrange(latent_image_ids, 'b t h w c -> b (t h w) c')
return latent_image_ids.to(device=device)
@torch.no_grad()
def _prepare_pyramid_image_ids(self, sample, batch_size, device):
image_ids_list = []
for i_b, sample_ in enumerate(sample):
if not isinstance(sample_, list):
sample_ = [sample_]
cur_image_ids = []
start_time_stamp = 0
train_height = sample_[-1].shape[-2] // self.patch_size
train_width = sample_[-1].shape[-1] // self.patch_size
for clip_ in sample_:
_, _, temp, height, width = clip_.shape
height = height // self.patch_size
width = width // self.patch_size
cur_image_ids.append(self._prepare_image_ids(batch_size, temp, height, width, train_height, train_width, device, start_time_stamp=start_time_stamp))
start_time_stamp += temp
cur_image_ids = torch.cat(cur_image_ids, dim=1)
image_ids_list.append(cur_image_ids)
return image_ids_list
def merge_input(self, sample, encoder_hidden_length, encoder_attention_mask):
"""
Merge the input video with different resolutions into one sequence
Sample: From low resolution to high resolution
"""
if isinstance(sample[0], list):
device = sample[0][-1].device
pad_batch_size = sample[0][-1].shape[0]
else:
device = sample[0].device
pad_batch_size = sample[0].shape[0]
num_stages = len(sample)
height_list = [];width_list = [];temp_list = []
trainable_token_list = []
for i_b, sample_ in enumerate(sample):
if isinstance(sample_, list):
sample_ = sample_[-1]
_, _, temp, height, width = sample_.shape
height = height // self.patch_size
width = width // self.patch_size
temp_list.append(temp)
height_list.append(height)
width_list.append(width)
trainable_token_list.append(height * width * temp)
# prepare the RoPE IDs,
image_ids_list = self._prepare_pyramid_image_ids(sample, pad_batch_size, device)
text_ids = torch.zeros(pad_batch_size, encoder_attention_mask.shape[1], 3).to(device=device)
input_ids_list = [torch.cat([text_ids, image_ids], dim=1) for image_ids in image_ids_list]
image_rotary_emb = [self.pos_embed(input_ids) for input_ids in input_ids_list] # [bs, seq_len, 1, head_dim // 2, 2, 2]
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
concat_output = True if self.training else False
image_rotary_emb = [all_to_all(x_.repeat(1, 1, sp_group_size, 1, 1, 1), sp_group, sp_group_size, scatter_dim=2, gather_dim=0, concat_output=concat_output) for x_ in image_rotary_emb]
input_ids_list = [all_to_all(input_ids.repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0, concat_output=concat_output) for input_ids in input_ids_list]
hidden_states, hidden_length = [], []
for sample_ in sample:
video_tokens = []
for each_latent in sample_:
each_latent = rearrange(each_latent, 'b c t h w -> b t h w c')
each_latent = rearrange(each_latent, 'b t (h p1) (w p2) c -> b (t h w) (p1 p2 c)', p1=self.patch_size, p2=self.patch_size)
video_tokens.append(each_latent)
video_tokens = torch.cat(video_tokens, dim=1)
video_tokens = self.x_embedder(video_tokens)
hidden_states.append(video_tokens)
hidden_length.append(video_tokens.shape[1])
# prepare the attention mask
if self.use_flash_attn:
attention_mask = None
indices_list = []
for i_p, length in enumerate(hidden_length):
pad_attention_mask = torch.ones((pad_batch_size, length), dtype=encoder_attention_mask.dtype).to(device)
pad_attention_mask = torch.cat([encoder_attention_mask[i_p::num_stages], pad_attention_mask], dim=1)
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
pad_attention_mask = all_to_all(pad_attention_mask.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0)
pad_attention_mask = pad_attention_mask.squeeze(2)
seqlens_in_batch = pad_attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(pad_attention_mask.flatten(), as_tuple=False).flatten()
indices_list.append(
{
'indices': indices,
'seqlens_in_batch': seqlens_in_batch,
}
)
encoder_attention_mask = indices_list
else:
assert encoder_attention_mask.shape[1] == encoder_hidden_length
real_batch_size = encoder_attention_mask.shape[0]
# prepare text ids
text_ids = torch.arange(1, real_batch_size + 1, dtype=encoder_attention_mask.dtype).unsqueeze(1).repeat(1, encoder_hidden_length)
text_ids = text_ids.to(device)
text_ids[encoder_attention_mask == 0] = 0
# prepare image ids
image_ids = torch.arange(1, real_batch_size + 1, dtype=encoder_attention_mask.dtype).unsqueeze(1).repeat(1, max(hidden_length))
image_ids = image_ids.to(device)
image_ids_list = []
for i_p, length in enumerate(hidden_length):
image_ids_list.append(image_ids[i_p::num_stages][:, :length])
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
concat_output = True if self.training else False
text_ids = all_to_all(text_ids.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0, concat_output=concat_output).squeeze(2)
image_ids_list = [all_to_all(image_ids_.unsqueeze(2).repeat(1, 1, sp_group_size), sp_group, sp_group_size, scatter_dim=2, gather_dim=0, concat_output=concat_output).squeeze(2) for image_ids_ in image_ids_list]
attention_mask = []
for i_p in range(len(hidden_length)):
image_ids = image_ids_list[i_p]
token_ids = torch.cat([text_ids[i_p::num_stages], image_ids], dim=1)
stage_attention_mask = rearrange(token_ids, 'b i -> b 1 i 1') == rearrange(token_ids, 'b j -> b 1 1 j') # [bs, 1, q_len, k_len]
if self.use_temporal_causal:
input_order_ids = input_ids_list[i_p][:,:,0]
temporal_causal_mask = rearrange(input_order_ids, 'b i -> b 1 i 1') >= rearrange(input_order_ids, 'b j -> b 1 1 j')
stage_attention_mask = stage_attention_mask & temporal_causal_mask
attention_mask.append(stage_attention_mask)
return hidden_states, hidden_length, temp_list, height_list, width_list, trainable_token_list, encoder_attention_mask, attention_mask, image_rotary_emb
def split_output(self, batch_hidden_states, hidden_length, temps, heights, widths, trainable_token_list):
# To split the hidden states
batch_size = batch_hidden_states.shape[0]
output_hidden_list = []
batch_hidden_states = torch.split(batch_hidden_states, hidden_length, dim=1)
if is_sequence_parallel_initialized():
sp_group_size = get_sequence_parallel_world_size()
if self.training:
batch_size = batch_size // sp_group_size
for i_p, length in enumerate(hidden_length):
width, height, temp = widths[i_p], heights[i_p], temps[i_p]
trainable_token_num = trainable_token_list[i_p]
hidden_states = batch_hidden_states[i_p]
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
if not self.training:
hidden_states = hidden_states.repeat(sp_group_size, 1, 1)
hidden_states = all_to_all(hidden_states, sp_group, sp_group_size, scatter_dim=0, gather_dim=1)
# only the trainable token are taking part in loss computation
hidden_states = hidden_states[:, -trainable_token_num:]
# unpatchify
hidden_states = hidden_states.reshape(
shape=(batch_size, temp, height, width, self.patch_size, self.patch_size, self.out_channels // 4)
)
hidden_states = rearrange(hidden_states, "b t h w p1 p2 c -> b t (h p1) (w p2) c")
hidden_states = rearrange(hidden_states, "b t h w c -> b c t h w")
output_hidden_list.append(hidden_states)
return output_hidden_list
def forward(
self,
sample: torch.FloatTensor, # [num_stages]
encoder_hidden_states: torch.Tensor = None,
encoder_attention_mask: torch.FloatTensor = None,
pooled_projections: torch.Tensor = None,
timestep_ratio: torch.LongTensor = None,
):
temb = self.time_text_embed(timestep_ratio, pooled_projections)
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
encoder_hidden_length = encoder_hidden_states.shape[1]
# Get the input sequence
hidden_states, hidden_length, temps, heights, widths, trainable_token_list, encoder_attention_mask, attention_mask, \
image_rotary_emb = self.merge_input(sample, encoder_hidden_length, encoder_attention_mask)
# split the long latents if necessary
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
concat_output = True if self.training else False
# sync the input hidden states
batch_hidden_states = []
for i_p, hidden_states_ in enumerate(hidden_states):
assert hidden_states_.shape[1] % sp_group_size == 0, "The sequence length should be divided by sequence parallel size"
hidden_states_ = all_to_all(hidden_states_, sp_group, sp_group_size, scatter_dim=1, gather_dim=0, concat_output=concat_output)
hidden_length[i_p] = hidden_length[i_p] // sp_group_size
batch_hidden_states.append(hidden_states_)
# sync the encoder hidden states
hidden_states = torch.cat(batch_hidden_states, dim=1)
encoder_hidden_states = all_to_all(encoder_hidden_states, sp_group, sp_group_size, scatter_dim=1, gather_dim=0, concat_output=concat_output)
temb = all_to_all(temb.unsqueeze(1).repeat(1, sp_group_size, 1), sp_group, sp_group_size, scatter_dim=1, gather_dim=0, concat_output=concat_output)
temb = temb.squeeze(1)
else:
hidden_states = torch.cat(hidden_states, dim=1)
for index_block, block in enumerate(self.transformer_blocks):
if self.training and self.gradient_checkpointing and (index_block <= int(len(self.transformer_blocks) * self.gradient_checkpointing_ratio)):
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
encoder_hidden_states,
encoder_attention_mask,
temb,
attention_mask,
hidden_length,
image_rotary_emb,
**ckpt_kwargs,
)
else:
encoder_hidden_states, hidden_states = block(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
temb=temb,
attention_mask=attention_mask,
hidden_length=hidden_length,
image_rotary_emb=image_rotary_emb,
)
# remerge for single attention block
num_stages = len(hidden_length)
batch_hidden_states = list(torch.split(hidden_states, hidden_length, dim=1))
concat_hidden_length = []
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
encoder_hidden_states = all_to_all(encoder_hidden_states, sp_group, sp_group_size, scatter_dim=0, gather_dim=1)
for i_p in range(len(hidden_length)):
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
batch_hidden_states[i_p] = all_to_all(batch_hidden_states[i_p], sp_group, sp_group_size, scatter_dim=0, gather_dim=1)
batch_hidden_states[i_p] = torch.cat([encoder_hidden_states[i_p::num_stages], batch_hidden_states[i_p]], dim=1)
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
batch_hidden_states[i_p] = all_to_all(batch_hidden_states[i_p], sp_group, sp_group_size, scatter_dim=1, gather_dim=0)
concat_hidden_length.append(batch_hidden_states[i_p].shape[1])
hidden_states = torch.cat(batch_hidden_states, dim=1)
for index_block, block in enumerate(self.single_transformer_blocks):
if self.training and self.gradient_checkpointing and (index_block <= int(len(self.single_transformer_blocks) * self.gradient_checkpointing_ratio)):
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
temb,
encoder_attention_mask,
attention_mask,
concat_hidden_length,
image_rotary_emb,
**ckpt_kwargs,
)
else:
hidden_states = block(
hidden_states=hidden_states,
temb=temb,
encoder_attention_mask=encoder_attention_mask, # used for
attention_mask=attention_mask,
hidden_length=concat_hidden_length,
image_rotary_emb=image_rotary_emb,
)
batch_hidden_states = list(torch.split(hidden_states, concat_hidden_length, dim=1))
for i_p in range(len(concat_hidden_length)):
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
batch_hidden_states[i_p] = all_to_all(batch_hidden_states[i_p], sp_group, sp_group_size, scatter_dim=0, gather_dim=1)
batch_hidden_states[i_p] = batch_hidden_states[i_p][:, encoder_hidden_length :, ...]
if is_sequence_parallel_initialized():
sp_group = get_sequence_parallel_group()
sp_group_size = get_sequence_parallel_world_size()
batch_hidden_states[i_p] = all_to_all(batch_hidden_states[i_p], sp_group, sp_group_size, scatter_dim=1, gather_dim=0)
hidden_states = torch.cat(batch_hidden_states, dim=1)
hidden_states = self.norm_out(hidden_states, temb, hidden_length=hidden_length)
hidden_states = self.proj_out(hidden_states)
output = self.split_output(hidden_states, hidden_length, temps, heights, widths, trainable_token_list)
return output |