Spaces:
Runtime error
Runtime error
File size: 1,763 Bytes
489c564 dd90f68 49ec14a ef3e238 d582d22 ef3e238 d582d22 ef3e238 49ec14a 9adf938 cfa5afa 9adf938 4e07626 8e5c897 4e07626 19dae2f 2b84e99 19dae2f 4e07626 cfa5afa 4e8b19e 823a19b 4e8b19e 823a19b 263203b 788e42f c9de4a3 cfa5afa a9d4166 4e07626 d582d22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from transformers import pipeline
examples = [
'Alisher Navoiy – ulug‘ o‘zbek va boshqa turkiy xalqlarning <mask>, mutafakkiri va davlat arbobi bo‘lgan.',
'Oʻzbekistonning poytaxti <mask> shahri boʻlib, davlat tili oʻzbek tili hisoblanadi.',
'Oʻzbekiston iqtisodiyoti bozor <mask> bosqichma-bosqich oʻtadi, tashqi savdo siyosati import oʻrnini bosishga asoslangan.',
'Kuchli yomg‘irlar tufayli bir qator <mask> kuchli sel oqishi kuzatildi.',
'Registon maydoni - tarixda shaharning ilm-fan, siyosat va <mask> markazi boʻlgan.',
'Venera - Quyosh tizimidagi o‘z o‘qi atrofida soat sohasi farqli ravishda aylanadigan yagona <mask>.'
]
models = [
"sinonimayzer/UzRoBERTa-v1",
"tahrirchi/tahrirchi-bert-base",
"rifkat/uztext-3Gb-BPE-Roberta"
]
def df(arr):
d = {}
for val in arr:
d[val['token_str']] = val['score']
return d
def fn(text):
arr = []
for model in models:
arr.append(df(pipeline("fill-mask", model=model)(text)))
return arr[0], arr[1], arr[2]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
output0 = gr.Label(label=models[0])
with gr.Column():
output1 = gr.Label(label=models[1])
with gr.Row():
with gr.Column():
output2 = gr.Label(label=models[2])
with gr.Column():
input = gr.Textbox(label="Input", value=examples[0], show_label=True)
gr.Examples(examples, fn=fn, inputs=[input], outputs=[output0, output1, output2], cache_examples=True, batch=True)
btn = gr.Button("Check")
btn.click(fn, inputs=[input], outputs=[output0, output1, output2])
if __name__ == "__main__":
demo.queue().launch()
|