Spaces:
Runtime error
Runtime error
Commit
Β·
1083f7f
1
Parent(s):
1305fc8
Add retrievers
Browse files- pages/6_π_Find_Demo.py +59 -0
pages/6_π_Find_Demo.py
CHANGED
@@ -4,6 +4,18 @@ import streamlit as st
|
|
4 |
import streamlit_analytics
|
5 |
from utils import add_logo_to_sidebar, add_footer, add_email_signup_form
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
streamlit_analytics.start_tracking()
|
8 |
|
9 |
st.set_page_config(
|
@@ -24,6 +36,53 @@ st.sidebar.success("π Select a demo above.")
|
|
24 |
st.title('π Find Demo')
|
25 |
st.markdown("π This demo is currently under construction. Please visit back soon.")
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
add_email_signup_form()
|
28 |
|
29 |
add_footer()
|
|
|
4 |
import streamlit_analytics
|
5 |
from utils import add_logo_to_sidebar, add_footer, add_email_signup_form
|
6 |
|
7 |
+
from haystack.document_stores import InMemoryDocumentStore
|
8 |
+
from haystack.nodes import BM25Retriever, EmbeddingRetreiver
|
9 |
+
|
10 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
11 |
+
DATA_REPO_ID = "simplexico/cuad-qa-answers"
|
12 |
+
DATA_FILENAME = "cuad_question_answers.json"
|
13 |
+
EMBEDDING_MODEL = "prajjwal1/bert-tiny"
|
14 |
+
if EMBEDDING_MODEL == "prajjwal1/bert-tiny":
|
15 |
+
EMBEDDING_DIM = 128
|
16 |
+
else:
|
17 |
+
EMBEDDING_DIM = 768
|
18 |
+
|
19 |
streamlit_analytics.start_tracking()
|
20 |
|
21 |
st.set_page_config(
|
|
|
36 |
st.title('π Find Demo')
|
37 |
st.markdown("π This demo is currently under construction. Please visit back soon.")
|
38 |
|
39 |
+
@st.cache(allow_output_mutation=True)
|
40 |
+
def load_dataset():
|
41 |
+
snapshot_download(repo_id=DATA_REPO_ID, token=HF_TOKEN, local_dir='./', repo_type='dataset')
|
42 |
+
df = pd.read_json(DATA_FILENAME)
|
43 |
+
return df
|
44 |
+
|
45 |
+
@st.cache(allow_output_mutation=True)
|
46 |
+
def generate_document_store(df):
|
47 |
+
"""Create haystack document store using contract clause data
|
48 |
+
"""
|
49 |
+
document_dicts = []
|
50 |
+
|
51 |
+
for idx, row in df.iterrows():
|
52 |
+
document_dicts.append(
|
53 |
+
{
|
54 |
+
'content': row['answer_text'],
|
55 |
+
'meta': {'contract_title': row['contract_title'], 'question_id': row['question_id']}
|
56 |
+
}
|
57 |
+
)
|
58 |
+
|
59 |
+
document_store = InMemoryDocumentStore(use_bm25=True, embedding_dim=EMBEDDING_DIM)
|
60 |
+
|
61 |
+
document_store.write_documents(document_dicts)
|
62 |
+
|
63 |
+
return document_store
|
64 |
+
|
65 |
+
@st.cache(allow_output_mutation=True)
|
66 |
+
def generate_bm25_retriever(document_store):
|
67 |
+
return BM25Retriever(document_store)
|
68 |
+
|
69 |
+
@st.cache(allow_output_mutation=True)
|
70 |
+
def generate_embeddings(embedding_model, document_store):
|
71 |
+
embedding_retriever = EmbeddingRetreiver(embedding_model=embedding_model, document_store=document_store)
|
72 |
+
document_store.update_embeddings(embedding_retriever)
|
73 |
+
return embedding_retriever
|
74 |
+
|
75 |
+
df = load_dataset()
|
76 |
+
|
77 |
+
document_store = generate_document_store(df)
|
78 |
+
|
79 |
+
bm25_retriever = generate_bm25_retriever(document_store)
|
80 |
+
|
81 |
+
embedding_retriever = generate_embeddings(EMBEDDING_MODEL, document_store)
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
add_email_signup_form()
|
87 |
|
88 |
add_footer()
|