import spaces import tempfile import asyncio import gradio as gr from streaming_stt_nemo import Model from huggingface_hub import InferenceClient import edge_tts default_lang = "en" engines = {default_lang: Model(default_lang)} def transcribe(audio): lang = "en" model = engines[lang] text = model.stt_file(audio)[0] return text client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") system_instructions = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]" def model(text): generate_kwargs = dict( temperature=0.7, max_new_tokens=512, top_p=0.95, repetition_penalty=1, do_sample=True, seed=42, ) formatted_prompt = system_instructions + text + "[OpenGPT 4o]" stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: if not response.token.text == "": output += response.token.text return output @spaces.GPU(duration=120) # Increase duration if needed async def respond(audio): user = transcribe(audio) reply = model(user) communicate = edge_tts.Communicate(reply) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return tmp_path with gr.Blocks() as voice: with gr.Row(): input = gr.Audio(label="Voice Chat", source="microphone", type="filepath") output = gr.Audio(label="OpenGPT 4o", type="filepath", interactive=False, autoplay=True) gr.Interface( fn=respond, inputs=[input], outputs=[output], live=True, ) theme = gr.themes.Base() with gr.Blocks(theme=theme, css="footer {visibility: hidden}textbox{resize:none}", title="GPT 4o DEMO") as demo: gr.Markdown("# OpenGPT 4o") gr.TabbedInterface([voice], ['🗣️ Voice Chat']) demo.queue(max_size=200) demo.launch()