Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,19 +5,24 @@ from streaming_stt_nemo import Model
|
|
5 |
from huggingface_hub import InferenceClient
|
6 |
import edge_tts
|
7 |
|
|
|
8 |
default_lang = "en"
|
9 |
engines = {default_lang: Model(default_lang)}
|
10 |
|
|
|
11 |
def transcribe(audio):
|
12 |
lang = "en"
|
13 |
model = engines[lang]
|
14 |
text = model.stt_file(audio)[0]
|
15 |
return text
|
16 |
|
|
|
17 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
18 |
|
|
|
19 |
system_instructions = "[SYSTEM] You are CrucialCoach, an AI-powered conversational coach. Guide the user through challenging workplace situations using the principles from 'Crucial Conversations'. Ask one question at a time and provide step-by-step guidance.\n\n[USER]"
|
20 |
|
|
|
21 |
@spaces.GPU(duration=120)
|
22 |
def model(text):
|
23 |
generate_kwargs = dict(
|
@@ -30,13 +35,15 @@ def model(text):
|
|
30 |
)
|
31 |
formatted_prompt = system_instructions + text + "[CrucialCoach]"
|
32 |
stream = client.text_generation(
|
33 |
-
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False
|
|
|
34 |
output = ""
|
35 |
for response in stream:
|
36 |
if not response.token.text == "</s>":
|
37 |
output += response.token.text
|
38 |
return output
|
39 |
|
|
|
40 |
async def respond(audio):
|
41 |
user = transcribe(audio)
|
42 |
reply = model(user)
|
@@ -46,22 +53,25 @@ async def respond(audio):
|
|
46 |
await communicate.save(tmp_path)
|
47 |
return tmp_path
|
48 |
|
|
|
49 |
theme = gr.themes.Base()
|
50 |
|
51 |
-
|
52 |
-
with gr.Blocks() as voice:
|
53 |
with gr.Row():
|
54 |
-
input = gr.Audio(label="Voice Chat",
|
55 |
-
output = gr.Audio(label="CrucialCoach", type="filepath",
|
56 |
-
interactive=False,
|
57 |
-
autoplay=True,
|
58 |
-
elem_classes="audio")
|
59 |
gr.Interface(
|
60 |
-
fn=respond,
|
61 |
inputs=[input],
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
|
|
|
65 |
gr.TabbedInterface([voice], ['🗣️ Crucial Coach Chat'])
|
|
|
|
|
66 |
demo.queue(max_size=200)
|
67 |
-
demo.launch()
|
|
|
5 |
from huggingface_hub import InferenceClient
|
6 |
import edge_tts
|
7 |
|
8 |
+
# Initialize default language and STT model
|
9 |
default_lang = "en"
|
10 |
engines = {default_lang: Model(default_lang)}
|
11 |
|
12 |
+
# Function to transcribe audio to text
|
13 |
def transcribe(audio):
|
14 |
lang = "en"
|
15 |
model = engines[lang]
|
16 |
text = model.stt_file(audio)[0]
|
17 |
return text
|
18 |
|
19 |
+
# Initialize Huggingface InferenceClient
|
20 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
21 |
|
22 |
+
# System instructions for the CrucialCoach
|
23 |
system_instructions = "[SYSTEM] You are CrucialCoach, an AI-powered conversational coach. Guide the user through challenging workplace situations using the principles from 'Crucial Conversations'. Ask one question at a time and provide step-by-step guidance.\n\n[USER]"
|
24 |
|
25 |
+
# Decorator for using GPU with a duration of 120 seconds
|
26 |
@spaces.GPU(duration=120)
|
27 |
def model(text):
|
28 |
generate_kwargs = dict(
|
|
|
35 |
)
|
36 |
formatted_prompt = system_instructions + text + "[CrucialCoach]"
|
37 |
stream = client.text_generation(
|
38 |
+
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False
|
39 |
+
)
|
40 |
output = ""
|
41 |
for response in stream:
|
42 |
if not response.token.text == "</s>":
|
43 |
output += response.token.text
|
44 |
return output
|
45 |
|
46 |
+
# Asynchronous function to handle audio input and provide response
|
47 |
async def respond(audio):
|
48 |
user = transcribe(audio)
|
49 |
reply = model(user)
|
|
|
53 |
await communicate.save(tmp_path)
|
54 |
return tmp_path
|
55 |
|
56 |
+
# Gradio theme
|
57 |
theme = gr.themes.Base()
|
58 |
|
59 |
+
# Gradio interface for voice chat
|
60 |
+
with gr.Blocks() as voice:
|
61 |
with gr.Row():
|
62 |
+
input = gr.Audio(label="Voice Chat", source="microphone", type="filepath", waveform_options=False)
|
63 |
+
output = gr.Audio(label="CrucialCoach", type="filepath", interactive=False, autoplay=True, elem_classes="audio")
|
|
|
|
|
|
|
64 |
gr.Interface(
|
65 |
+
fn=respond,
|
66 |
inputs=[input],
|
67 |
+
outputs=[output],
|
68 |
+
live=True
|
69 |
+
)
|
70 |
|
71 |
+
# Gradio demo setup
|
72 |
+
with gr.Blocks(theme=theme, css="footer {visibility: hidden} textbox {resize: none}", title="CrucialCoach DEMO") as demo:
|
73 |
gr.TabbedInterface([voice], ['🗣️ Crucial Coach Chat'])
|
74 |
+
|
75 |
+
# Queue setup and launch
|
76 |
demo.queue(max_size=200)
|
77 |
+
demo.launch()
|